Field emission in vacuum microelectronics
著者
書誌事項
Field emission in vacuum microelectronics
(Microdevices : physics and fabrication technologies)
Kluwer Academic/Plenum Publishers, c2005
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.
目次
Foreword. Historical Overview. 1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume. 2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume. 3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume. 4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume. 5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume. 6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume. 7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume. 8: Advance in Applications. 8.1.
「Nielsen BookData」 より