Mathematical bioeconomics : the optimal management of renewable resources
著者
書誌事項
Mathematical bioeconomics : the optimal management of renewable resources
(Wiley-interscience paperback series)(Pure and applied mathematics)
J. Wiley, c2005
2nd ed
- : [pbk]
大学図書館所蔵 件 / 全16件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Wiley-Interscience."
Includes bibliographical references (p. 367-379) and index
内容説明・目次
内容説明
This book is from the "Wiley-Interscience Paperback Series". "The Wiley-Interscience Paperback Series" consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, "Wiley" hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. 'The body of theory presented [in this book] is a completely interdisciplinary, integrated synthesis of theory, methods and data from ecology, economics, public policy, the history of various resources, and a wide array of topics in applied mathematics and operations research. The level of treatment is very thoughtful, penetrating, and innovative. The coverage of relevant material is extremely comprehensive' - "The Quarterly Review of Biology". 'Overall, this is an appealing work for students and professionals, and is certain to remain as one of the key works in natural resource analysis' - "Mathematical Reviews".
"Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Second Edition" serves as an introduction to the theory of biological conservation, including a wealth of applications to the fishery and forestry industries. The mathematical modeling of the productive aspects of renewable-resource management is explained, featuring both economic and biological factors, with much attention paid to the optimal use of resource stocks over time. This second edition provides new chapters on the theory of resource regulation and on stochastic resource models, new sections on irreversible investment, game-theoretic models, dynamic programming, and an expanded bibliography.
目次
Introduction. 1. Elementary Dynamics of Exploited Populations. 1.1 The Logistic Growth Model. 1.2 Generalized Logistic Models: Depensation. 1.3 Summary and Critique. 2. Economic Models of Renewable-Resource Harvesting. 2.1 The Open-Access Fishery. 2.2 Economic Overfishing. 2.3 Biological Overfishing. 2.4 Optimal Fishery Management. 2.5 The Optimal Harvest Policy. 2.6 Examples Based on the Schaefer Model. 2.7 Linear Variational Problems. 2.8 The Possibility of Extinction. 2.9 Summary and Critique. 3. Capital-Theoretic Aspects of Resource Management. 3.1 Interest and Discount Rates. 3.2 Capital Theory and Renewable Resources. 3.3 Nonautonomous Models. 3.4 Applications to Policy Problems: Labor Mobility in the Fishery. 4. Optimal Control Theory. 4.1 One-Dimensional Control Problems. 4.2 A Nonlinear Fishery Model. 4.3 Economic Interpretation of the Maximum Principle. 4.4 Multidimensional Optimal Control Problem. 4.5 Optimal Investment in Renewable-Resource Harvesting. 5. Supply and Demand: Nonlinear Models. 5.1 The Elementary Theory of Supply and Demand. 5.2 Supply and Demand in Fisheries. 5.3 Nonlinear Cost Effects: Pulse Fishing. 5.4 Game-Theoretic Models. 5.5 Transboundary Fishery Resources: A Further Application of the Theory. 5.6 Summary and Critique. 6. Dynamical Systems. 6.1 Basic Theory. 6.2 Dynamical Systems in the Plane: Linear Theory. 6.3 Isoclines. 6.4 Nonlinear Plane-Autonomous Systems. 6.5 Limit Cycles. 6.6 Gause's Model of Interspecific Competition. 7. Discrete-Time and Metered Models. 7.1 A General Metered Stock-Recruitment Model. 7.2 The Beverton-Holt Stock-Recruitment Model. 7.3 Depensation Models. 7.4 Overcompensation. 7.5 A Simple Cohort Model. 7.6 The Production Function of a Fishery. 7.7 Optimal Harvest Policies. 7.8 The Discrete Maximum Principle. 7.9 Dynamic Programming. 8. The Theory of Resource Regulation. 8.1 A Behavioral Model. 8.2 Optimization Analysis. 8.3 Limited Entry. 8.4 Taxes and Allocated Transferable Quotas. 8.5 Total Catch Quotas. 8.6 Summary and Critique. 9. Growth and Aging. 9.1 Forestry Management: The Faustmann Model. 9.2 The Beverton-Holt Fisheries Model. 9.3 Dynamic Optimization in the Beverton-Holt Model. 9.4 The Case of Bounded F. 9.5 Multiple, Cohorts: Nonselective Gear. 9.6 Pulse Fishing. 9.7 Multiple Cohorts: Selective Gear. 9.8 Regulation. 9.9 Summary and Critique. 10. Multispecies Models. 10.1 Differential Productivity. 10.2 Harvesting Competing Populations. 10.3 Selective Harvesting. 10.4 A Diffusion Model: The Inshore-Offshore Fishery. 10.5 Summary and Critique. 11. Stochastic Resource Models. 11.1 Stochastic Dynamic Programming. 11.2 A Stochastic Forest Rotation Model. 11.3 Uncertainty and Learning. 11.4 Searching for Fish. 11.5 Summary and Critique. Supplementary Reading. References. Index.
「Nielsen BookData」 より