Foundations of learning classifier systems

著者

    • Bull, Larry
    • Kovacs, Tim

書誌事項

Foundations of learning classifier systems

Larry Bull, Tim Kovacs (eds.)

(Studies in fuzziness and soft computing, v. 183)

Springer, c2005

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Includs bibliographical references

内容説明・目次

内容説明

This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computation) tailored for a classifier systems audience and written by acknowledged authorities in their area - as well as a relevant historical original work by John Holland.

目次

Section 1 - Rule Discovery. Population Dynamics of Genetic Algorithms. Approximating Value Functions in Classifier Systems. Two Simple Learning Classifier Systems. Computational Complexity of the XCS Classifier System. An Analysis of Continuous-Valued Representations for Learning Classifier Systems.- Section 2 - Credit Assignment. Reinforcement Learning: a Brief Overview. A Mathematical Framework for Studying Learning Classifier Systems. Rule Fitness and Pathology in Learning Classifier Systems. Learning Classifier Systems: A Reinforcement Learning Perspective. Learning Classifier Systems with Convergence and Generalization.- Section 3 - Problem Characterization. On the Classification of Maze Problems. What Makes a Problem Hard?

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA73314626
  • ISBN
    • 3540250735
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    vi, 336 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ