Inference in hidden Markov models

著者
書誌事項

Inference in hidden Markov models

Olivier Cappé, Eric Moulines, Tobias Rydén

(Springer series in statistics)

Springer, c2005

この図書・雑誌をさがす
注記

Includes bibliographical references (p. [625]-644) and index

内容説明・目次

内容説明

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

目次

Main Definitions and Notations.- Main Definitions and Notations.- State Inference.- Filtering and Smoothing Recursions.- Advanced Topics in Smoothing.- Applications of Smoothing.- Monte Carlo Methods.- Sequential Monte Carlo Methods.- Advanced Topics in Sequential Monte Carlo.- Analysis of Sequential Monte Carlo Methods.- Parameter Inference.- Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing.- Maximum Likelihood Inference, Part II: Monte Carlo Optimization.- Statistical Properties of the Maximum Likelihood Estimator.- Fully Bayesian Approaches.- Background and Complements.- Elements of Markov Chain Theory.- An Information-Theoretic Perspective on Order Estimation.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA73516562
  • ISBN
    • 0387402640
  • LCCN
    2005923551
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xvii, 652 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ