Reverse mathematics 2001
Author(s)
Bibliographic Information
Reverse mathematics 2001
(Lecture notes in logic, 21)
A K Peters, c2005
- : hard
- : paperback
Available at 12 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
- Volume
-
: hard ISBN 9781568812632
Description
Reverse Mathematics is a program of research in the foundations of mathematics, motivated by the foundational questions of what are appropriate axioms for mathematics, and what are the logical strengths of particular axioms and particular theorems. The book contains 24 original papers by leading researchers. These articles exhibit the exciting recent developments in reverse mathematics and subsystems of second order arithmetic.
Table of Contents
1. Possible ra-diagrams of models of arithmetic 2. Weak theories of nonstandard arithmetic and analysis 3. Notions of compactness in weak subsystems of second order arithmetic 4. Proof-theoretic strength of the stable marriage theorem and other problems 5. Free sets and reverse mathematics 6. Interpreting arithmetic in the r.e. degrees under Z4-induction 7. Reverse mathematics, Archimedean classes, and Hahn's Theorem 8. The Baire category theorem over a feasible base theory 9. Basic applications of weak Konig's lemma in feasible analysis 10. Maximal nonfinitely generated subalgebras 11. Metamathematics of comparability 12. A note on compactness of countable sets 13. A survey of the reverse mathematics of ordinal arithmetic 14. Reverse mathematics and ordinal suprem 15. Did Cantor need set theory? 16. Models of arithmetic: Quantifiers and complexity 17. Higher order reverse mathematics 18. Arithmetic saturation 19. WQO and BQO theory in subsystems of second order arithmetic 20. Reverse mathematics and graph coloring: Eliminating diagonalization 21. Undecidable theories and reverse mathematics 22. II1 sets and models of WKLo 23. Manipulating the reals in RCA0 24. Reverse mathematics and weak systems of 0-1 strings for feasible analysis
- Volume
-
: paperback ISBN 9781568812649
Description
Reverse Mathematics is a program of research in the foundations of mathematics, motivated by the foundational questions of what are appropriate axioms for mathematics, and what are the logical strengths of particular axioms and particular theorems. The book contains 24 original papers by leading researchers. These articles exhibit the exciting recent developments in reverse mathematics and subsystems of second order arithmetic.
by "Nielsen BookData"