Phenomenological and mathematical modelling of structural instabilities
著者
書誌事項
Phenomenological and mathematical modelling of structural instabilities
(CISM courses and lectures, no. 470)
Springer, c2005
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
The study of structural instability plays a role of primary importance in the field of applied mechanics. Despite the remarkable progresses made in the recent past years, the structural instability remains one of the most challenging topics in applied - chanics. Many problems have bee:: solved in the last decades but still many others remain to be solved satisfactorily. The increasing number of papers published in jo- nals and conferences organized by ECCS, SSRC, IUTAM, and EUROMECH strongly indicates the interest of scientists and engineers in the subject. A careful examination of these publications shows that they tend to fall into one of the two categories. The first is that of practical design direction in which methods for analyzing specific stability problems related to some specific structural typologies are developed. The research works are restricted to determining the critical load, considering that it is sufficient to know the limits of stability range. These studies are invaluable since their aim is to provide solutions to practical problems, to supply the designer with data useful for design and prepare norms, specifications and codes. The second direction is that of theoretical studies, aiming at a mathematical modeling of the instability problems, for a better understanding of the phenomena. In these studies, special emphasis is placed on the behavior of structures after the loss of stability in the post-critical range. This approach is less familiar to designers as its results have not yet become part of current structural design practice.
目次
Mathematical Modelling of Instability Phenomena.- Phenomenological Modelling of Instability.- Modelling Buckling Interaction.- Computational asymptotic post-buckling analysis of slender elastic structures.- Mechanical Models for the Subclasses of Catastrophes.
「Nielsen BookData」 より