An introduction to generalized linear models
著者
書誌事項
An introduction to generalized linear models
(Sage publications series, . Quantitative applications in the social sciences ; no. 07-145)
Sage Publications, c2006
- : pbk
大学図書館所蔵 全45件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 69) and index
内容説明・目次
内容説明
Do you have data that is not normally distributed and don't know how to analyze it using generalized linear models (GLM)? Beginning with a discussion of fundamental statistical modeling concepts in a multiple regression framework, the authors extend these concepts to GLM (including Poisson regression. logistic regression, and proportional hazards models) and demonstrate the similarity of various regression models to GLM. Each procedure is illustrated using real life data sets, and the computer instructions and results will be presented for each example. Throughout the book, there is an emphasis on link functions and error distribution and how the model specifications translate into likelihood functions that can, through maximum likelihood estimation be used to estimate the regression parameters and their associated standard errors. This book provides readers with basic modeling principles that are applicable to a wide variety of situations.
Key Features:
- Provides an accessible but thorough introduction to GLM, exponential family distribution, and maximum likelihood estimation
- Includes discussion on checking model adequacy and description on how to use SAS to fit GLM
- Describes the connection between survival analysis and GLM
This book is an ideal text for social science researchers who do not have a strong statistical background, but would like to learn more advanced techniques having taken an introductory course covering regression analysis.
目次
List of Figures and Tables
Series Editor's Introduction
Acknowledgments
1. Generalized Linear Models
2. Some Basic Modeling Concepts
Categorical Independent Variables
Essential Components of Regression Modeling
3. Classical Multiple Regression Model
Assumptions and Modeling Approach
Results of Regression Analysis
Multiple Correlation
Testing Hypotheses
4. Fundamentals of Generalized Linear Modeling
Exponential Family of Distributions
Classical Normal Regression
Logistic Regression
Poisson Regression
Proportional Hazards Survival Model
5. Maximum Likelihood Estimation
6. Deviance and Goodness of Fit
Using Deviances to Test Statistical Hypotheses
Goodness of Fit
Assessing Goodness of Fit by Residual Analysis
7. Logistic Regression
Example of Logistic Regression
8. Poisson Regression
Example of Poisson Regression Model
9. Survival Analysis
Survival Time Distributions
Exponential Survival Model
Example of Exponential Survival Model
Conclusions
Appendix
References
Index
About the Authors
「Nielsen BookData」 より