Turnpike properties in the calculus of variations and optimal control
Author(s)
Bibliographic Information
Turnpike properties in the calculus of variations and optimal control
(Nonconvex optimization and its applications, v. 80)
Springer, c2006
- alk. paper
- ebook
Available at / 4 libraries
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
alk. paperZAS||3||105051854
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. [387]-394) and index
Description and Table of Contents
Description
This monograph is devoted to recent progress in the turnpike t- ory. Turnpike properties are well known in mathematical economics. The term was ?rst coined by Samuelson who showed that an e?cient expanding economy would for most of the time be in the vicinity of a balanced equilibrium path (also called a von Neumann path) [78, 79]. These properties were studied by many authors for optimal trajec- ries of a Neumann-Gale model determined by a superlinear set-valued mapping. In the monograph we discuss a number of results conce- ing turnpike properties in the calculus of variations and optimal control which were obtained by the author in the last ten years. These results showthattheturnpikepropertiesareageneralphenomenonwhichholds for various classes of variational problems and optimal control problems. Turnpike properties are studied for optimal control problems on- nite time intervals [T ,T ] of the real line. Solutions of such problems 1 2 (trajectories) always depend on the time interval [T ,T ], an optimality 1 2 criterion which is usually determined by a cost function, and on data which is some initial conditions.
In the turnpike theory we are int- ested in the structure of solutions of optimal problems. We study the behavior of solutions when an optimality criterion is ?xed while T ,T 1 2 andthedatavary.
Table of Contents
Infinite Horizon Variational Problems.- Extremals of Nonautonomous Problems.- Extremals of Autonomous Problems.- Infinite Horizon Autonomous Problems.- Turnpike for Autonomous Problems.- Linear Periodic Control Systems.- Linear Systems with Nonperiodic Integrands.- Discrete-Time Control Systems.- Control Problems in Hilbert Spaces.- A Class of Differential Inclusions.- Convex Processes.- A Dynamic Zero-Sum Game.
by "Nielsen BookData"