Probability measures on metric spaces
著者
書誌事項
Probability measures on metric spaces
AMS Chelsea Pub., 2005
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally published: New York : Academic Press, 1967, in series: Probability and mathematical statistics, a series of monographs and textbooks."--T.p. verso
Includes bibliographical references (p. 270-272) and index
内容説明・目次
内容説明
Having been out of print for over 10 years, the AMS is delighted to bring this classic volume back to the mathematical community. With this fine exposition, the author gives a cohesive account of the theory of probability measures on complete metric spaces (which he views as an alternative approach to the general theory of stochastic processes). After a general description of the basics of topology on the set of measures, he discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems.Next, he describes arithmetic properties of probability measures on metric groups and locally compact abelian groups. Covered in detail are notions such as decomposability, infinite divisibility, idempotence, and their relevance to limit theorems for 'sums' of infinitesimal random variables. The book concludes with numerous results related to limit theorems for probability measures on Hilbert spaces and on the spaces $C[0,1]$. ""The Mathematical Reviews"" comments about the original edition of this book are as true today as they were in 1967. It remains a compelling work and a priceless resource for learning about the theory of probability measures. The volume is suitable for graduate students and researchers interested in probability and stochastic processes and would make an ideal supplementary reading or independent study text.
目次
The Borel subsets of a metric space Probability measures in a metric space Probability measures in a metric group Probability measures in locally compact abelian groups The Kolmogorov consistency theorem and conditional probability Probability measures in a Hilbert space Probability measures on $C[0,1]$ and $D[0,1]$ Bibliographical notes Bibliography List of symbols Author index Subject index.
「Nielsen BookData」 より