Well-posed, ill-posed, and intermediate problems with applications
著者
書誌事項
Well-posed, ill-posed, and intermediate problems with applications
(Inverse and ill-posed problems series)
VSP, c2005
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Including bibliographical references and index
内容説明・目次
内容説明
This book deals with one of the key problems in applied mathematics, namely the investigation into and providing for solution stability in solving equations with due allowance for inaccuracies in set initial data, parameters and coefficients of a mathematical model for an object under study, instrumental function, initial conditions, etc., and also with allowance for miscalculations, including roundoff errors.
目次
Part I
Three classes of problems in mathematics, physics, and engineering
Chapter 1. Simplest ill-posed problems
1.1. Statement of the problem. Examples
1.2. Definitions
1.3. Examples and approaches to solving ill-posed problems
1.4. Ill-posed problems of synthesis for optimum control systems
1.5. Ill-posed problems on finding eigenvalues for systems of linear homogeneous equations
1.6. Solution of systems of differential equations. Do solutions always depend on parameters continuously?
1.7. Conclusions
Chapter 2. Problems intermediate between well and ill-posed problems
2.1. The third class of problems in mathematics, physics and engineering, and its significance
2.2. Transformations equivalent in the classical sense
2.3. Discovered paradoxes
2.4. Transformations equivalent in the widened sense
2.5. Problems intermediate between well- and ill-posed problems
2.6. Applications to control systems and some other objects described by differential equations
2.7. Applications to practical computations
2.8. Conclusions from Chapters 1 and 2
Chapter 3. Change of sensitivity to measurement errors under integral transformations used in modeling of ships and marine control systems
3.1. Application of integral transformations to practical problems
3.2. Properties of correlation functions
3.3. Properties of spectra
3.4. Correctness of integral transformations
3.5. Problems low sensitive to errors in the spectrum
3.6. Differentiation of distorted functions
3.7. Prognostication
Bibliography to Part I 102
Part II
Stable methods for solving inverse problems
Chapter 4. Regular methods for solving ill-posed problems
4.1. Elements of functional analysis
4.2. Some facts from linear algebra
4.3. Basic types of equations and transformations
4.4. Well- and ill-posedness according to Hadamard
4.5. Classical methods for solving Fredholm integral equations of the first kind
4.6. Gauss least-squares method and Moore-Penrose inverse-matrix method
4.7. Tikhonov regularization method
4.8. Solution-on-the-compact method
Chapter 5. Inverse problems in image reconstruction and tomography
5.1. Reconstruction of blurred images
5.2. Reconstruction of defocused images
5.3. X-ray tomography problems
5.4. Magnetic-field synthesis in an NMR tomograph
Bibliography to Part II
「Nielsen BookData」 より