Statistical methods in the atmospheric sciences
著者
書誌事項
Statistical methods in the atmospheric sciences
(International geophysics series : a series of monographs and textbooks / edited by Renata Dmowska and James R. Holton, v. 91)
Academic Press, c2006
2nd ed
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 587-610) and index
内容説明・目次
内容説明
Statistical Methods in the Atmospheric Sciences, Second Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines.
In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations.
This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines.
目次
PART I: Preliminaries
CHAPTER 1. Introduction
CHAPTER 2. Review of Probability
PART II: Univariate Statistics
CHAPTER 3. Empirical Distributions and Exploratory Data Analysis
CHAPTER 4. Parametric Probability Distributions
CHAPTER 5. Hypothesis Testing
CHAPTER 6. Statistical Forecasting
CHAPTER 7. Forecast Verification
CHAPTER 8. Time Series
PART III: Multivariate Statistics
CHAPTER 9. Matrix Algebra and Random Matrices
CHAPTER 10. The Multivariate Normal (MVN) Distribution
CHAPTER 11. Principal Component (EOF) Analysis
CHAPTER 12. Canonical Correlation Analysis (CCA)
CHAPTER 13. Discrimination and Classification
CHAPTER 14. Cluster Analysis
「Nielsen BookData」 より