Bibliographic Information

Feedback control of dynamic systems

Gene F. Franklin, J. David Powell, Abbas Emami-Naeini

Prentice Hall, c2006

5th ed

Available at  / 11 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

For courses in Control Theory, in departments of Mechanical Engineering, Aerospace Engineering, or Electrical Engineering. Reorganized for use in any length course, this introductory text provides an in-depth, comprehensive treatment of a collection of classical and state-space approaches to control system design. It ties the methods together so that a designer is able to pick the method that best fits the problem at hand. The authors provide case studies and comprehensive examples with close integration of MATLAB throughout.

Table of Contents

Preface 1. An Overview and Brief History of Feedback Control. A Simple Feedback System. A First Analysis of Feedback. A Brief History. 2. Dynamic Models. Dynamics of Mechanical Systems. Differential Equations in State-Variable Form. Models of Electric Circuits. Models of Electromechanical Systems. Heat- and Fluid-Flow Models. Linearization and Scaling. 3. Dynamic Response. Review of Laplace Transforms. System Modeling Diagrams. Effect of Pole Locations. Time-Domain Specifications. Effects of Zeros and Additional Poles. Stability. Numerical Simulation. Obtaining Models from Experimental Data. 4. Basic Properties of Feedback. A Case Study of Speed Control. The Classical Three-Term Controller. Steady-State Tracking and System Type. Digital Implementation of Controllers. 5. The Root-Locus Design Method. Root Locus of a Basic Feedback System. Guidelines for Sketching a Root Locus. Selected Illustrative Root Loci. Selecting the Parameter Value. Dynamic Compensation. A Design Example Using the Root Locus. Extensions of the Root-Locus Method. 6. The Frequency-Response Design Method. Frequency Response. Neutral Stability. The Nyquist Stability Criterion. Stability Margins. Bode's Gain-Phase Relationship. Closed-Loop Frequency Response. Compensation. Alternate Presentations of Data. Specifications in Terms of the Sensitivity Function. Time Delay. Obtaining a Pole-Zero Model from Frequency-Response Data. 7. State-Space Design. Advantages of State Space. Analysis of the State Equations. Control-Law Design for Full-State Feedback. Selection of Pole Locations for Good Design. Estimator Design. Compensator Design: Combined Control Law and Estimator. Loop Transfer Recovery (LTR). Introduction of the Reference Input with the Estimator. Integral Control and Robust Tracking. Direct Design with Rational Transfer Functions. Design for Systems with Pure Time Delay. Lyapunov Stability. 8. Digital Control. Digitization. Dynamic Analysis of Discrete Systems. Design by Emulation. Discrete Design. State-Space Design Methods. Hardware Characteristics. Word-Size Effects. Sample-Rate Selection. 9. Nonlinear Systems Introduction and Motivation: Why Study Nonlinear Systems? Analysis by Linearization. Equivalent Gain Analysis Using the Root Locus. Equivalent Gain Analysis Using Frequency Response: Describing Functions. Analysis and Design Based on Stability. 10. Control-System Design: Principles and Case Studies. An Outline of Control Systems Design. Design of a Satellite's Attitude Control. Lateral and Longitudinal Control of a Boeing 747. Control of the Fuel-Air Ratio in an Automotive Engine. Control of a Digital Tape Transport. Control of the Read/Write Head Assembly of a Hard Disk. Control of Rapid Thermal Processing (RTP) Systems in Semiconductor Wafer Manufacturing. Appendices A. Laplace Transforms B. A Review of Complex Variables C. Summary of Matrix Theory D. Controllability and Observability E. Ackerman's Formula for Pole Placement F. MATLAB Commands G. Solutions to the End of Chapter Questions References Index

by "Nielsen BookData"

Details

  • NCID
    BA75105911
  • ISBN
    • 0131499300
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Upper Saddle River
  • Pages/Volumes
    xvii, 910 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
Page Top