Integrable systems and non-perturbative methods
著者
書誌事項
Integrable systems and non-perturbative methods
(Astronomy and astrophysics library, . Theory of orbits / D. Boccaletti,
Springer, 2004
Corr. 3rd print
大学図書館所蔵 件 / 全2件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. [375]-384) and indexes
内容説明・目次
内容説明
Half a century ago, S. Chandrasekhar wrote these words in the preface to his l celebrated and successful book: In this monograph an attempt has been made to present the theory of stellar dy namics as a branch of classical dynamics - a discipline in the same general category as celestial mechanics. [ ... J Indeed, several of the problems of modern stellar dy namical theory are so severely classical that it is difficult to believe that they are not already discussed, for example, in Jacobi's Vorlesungen. Since then, stellar dynamics has developed in several directions and at var ious levels, basically three viewpoints remaining from which to look at the problems encountered in the interpretation of the phenomenology. Roughly speaking, we can say that a stellar system (cluster, galaxy, etc.) can be con sidered from the point of view of celestial mechanics (the N-body problem with N " 1), fluid mechanics (the system is represented by a material con tinuum), or statistical mechanics (one defines a distribution function for the positions and the states of motion of the components of the system).
目次
- The Theory of Orbits from Epicycles to "Chaos".- 1. Dynamics and Dynamical Systems - Quod Satis.- 2. The Two-Body Problem.- 3. The N-Body Problem.- 4. The Three-Body Problem.- 5. Orbits in Given Potentials.- Mathematical Appendix.- A.1 Spherical Trigonometry.- A.2 Curvilinear Coordinate Systems.- A.3 Riemannian Geometry.- Bibliographical Notes.- Name Index.
「Nielsen BookData」 より