Ideal theory
著者
書誌事項
Ideal theory
(Cambridge tracts in mathematics and mathematical physics, no. 42)
Cambridge Univeristy Press, 2004
- :pbk
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliographical references : p.110
Includes Index
内容説明・目次
内容説明
Ideal theory is important not only for the intrinsic interest and purity of its logical structure but because it is a necessary tool in many branches of mathematics. In this introduction to the modern theory of ideals, Professor Northcott assumes a sound background of mathematical theory but no previous knowledge of modern algebra. After a discussion of elementary ring theory, he deals with the properties of Noetherian rings and the algebraic and analytical theories of local rings. In order to give some idea of deeper applications of this theory the author has woven into the connected algebraic theory those results which play outstanding roles in the geometric applications.
目次
- Author's preface
- Preliminaries
- 1. The primary decomposition
- 2. Residue rings and rings of quotients
- 3. Some fundamental properties of noetherian rings
- 4. The algebraic theory of local rings
- 5. The analytic theory of local rings
- Notes
- References
- Index of definitions.
「Nielsen BookData」 より