Walsh equiconvergence of complex interpolating polynomials

Bibliographic Information

Walsh equiconvergence of complex interpolating polynomials

by Amnon Jakimovski, Ambikeshwar Sharma and József Szabados

(Springer monographs in mathematics)

Springer, c2006

  • : hbk

Available at  / 16 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 291-296)

Description and Table of Contents

Description

1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|

Table of Contents

Lagrange Interpolation and Walsh Equiconvergence.- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence.- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence.- Sharpness Results.- Converse Results.- Pade Approximation and Walsh Equiconvergence for Meromorphic Functions with ?-Poles.- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions.- Equiconvergence for Functions Analytic in an Ellipse.- Walsh Equiconvergence Theorems for the Faber Series.- Equiconvergence on Lemniscates.- Walsh Equiconvergence and Equisummability.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA76312875
  • ISBN
    • 9781402041747
  • Country Code
    ne
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Dordrecht
  • Pages/Volumes
    xiii, 296 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top