Walsh equiconvergence of complex interpolating polynomials
著者
書誌事項
Walsh equiconvergence of complex interpolating polynomials
(Springer monographs in mathematics)
Springer, c2006
- : hbk
大学図書館所蔵 件 / 全16件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 291-296)
内容説明・目次
内容説明
1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|
目次
Lagrange Interpolation and Walsh Equiconvergence.- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence.- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence.- Sharpness Results.- Converse Results.- Pade Approximation and Walsh Equiconvergence for Meromorphic Functions with ?-Poles.- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions.- Equiconvergence for Functions Analytic in an Ellipse.- Walsh Equiconvergence Theorems for the Faber Series.- Equiconvergence on Lemniscates.- Walsh Equiconvergence and Equisummability.
「Nielsen BookData」 より