Fuzzy quantifiers : a computational theory
著者
書誌事項
Fuzzy quantifiers : a computational theory
(Studies in fuzziness and soft computing, v. 193)
Springer, c2006
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [425]-435) and index
内容説明・目次
内容説明
From a linguistic perspective, it is quanti?cation which makes all the di?- ence between "having no dollars" and "having a lot of dollars". And it is the meaning of the quanti?er "most" which eventually decides if "Most Ame- cans voted Kerry" or "Most Americans voted Bush" (as it stands). Natural language(NL)quanti?erslike"all","almostall","many"etc. serveanimp- tant purpose because they permit us to speak about properties of collections, as opposed to describing speci?c individuals only; in technical terms, qu- ti?ers are a 'second-order' construct. Thus the quantifying statement "Most Americans voted Bush" asserts that the set of voters of George W. Bush c- prisesthemajorityofAmericans,while"Bushsneezes"onlytellsussomething about a speci?c individual. By describing collections rather than individuals, quanti?ers extend the expressive power of natural languages far beyond that of propositional logic and make them a universal communication medium. Hence language heavily depends on quantifying constructions. These often involve fuzzy concepts like "tall", and they frequently refer to fuzzy quantities in agreement like "about ten", "almost all", "many" etc. In order to exploit this expressive power and make fuzzy quanti?cation available to technical applications, a number of proposals have been made how to model fuzzy quanti?ers in the framework of fuzzy set theory. These approaches usually reduce fuzzy quanti?cation to a comparison of scalar or fuzzy cardinalities [197, 132].
目次
An Introduction to Fuzzy Quantification: Origins and Basic Concepts.- A Framework for Fuzzy Quantification.- The Axiomatic Class of Plausible Models.- Semantic Properties of the Models.- Special Subclasses of Models.- Special Semantical Properties and Theoretical Limits.- Models Defined in Terms of Three-Valued Cuts and Fuzzy-Median Aggregation.- Models Defined in Terms of Upper and Lower Bounds on Three-Valued Cuts.- The Full Class of Models Defined in Terms of Three-Valued Cuts.- The Class of Models Based on the Extension Principle.- Implementation of Quantifiers in the Models.- Multiple Variable Binding and Branching Quantification.- Discussion.
「Nielsen BookData」 より