Parallel evolutionary computations
Author(s)
Bibliographic Information
Parallel evolutionary computations
(Studies in computational intelligence, v. 22)
Springer, c2006
Available at 5 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and indexes
Description and Table of Contents
Description
This book focuses on the aspects related to the parallelization of evolutionary computations, such as parallel genetic operators, parallel fitness evaluation, distributed genetic algorithms, and parallel hardware implementations, as well as on their impact on several applications. It offers a wide spectrum of sample works developed in leading research about parallel implementations of efficient techniques at the heart of computational intelligence.
Table of Contents
Parallel Evolutionary Optimization.- A Model for Parallel Operators in Genetic Algorithms.- Parallel Evolutionary Multiobjective Optimization.- Parallel Hardware for Genetic Algorithms.- A Reconfigurable Parallel Hardware for Genetic Algorithms.- Reconfigurable Computing and Parallelism for Implementing and Accelerating Evolutionary Algorithms.- Distributed Evolutionary Computation.- Performance of Distributed GAs on DNA Fragment Assembly.- On Parallel Evolutionary Algorithms on the Computational Grid.- Parallel Evolutionary Algorithms on Consumer-Level Graphics Processing Unit.- Parallel Particle Swarm Optimization.- Intelligent Parallel Particle Swarm Optimization Algorithms.- Parallel Ant Colony Optimization for 3D Protein Structure Prediction using the HP Lattice Model.
by "Nielsen BookData"