Estimation of dependences based on empirical data
著者
書誌事項
Estimation of dependences based on empirical data
(Information science and statistics / series editors M. Jordan ... [et al.])
Springer, c2006
[2nd ed.]
- タイトル別名
-
Vosstanovlenie zavisimosteĭ po ėmpiricheskim dannym
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Reprint of 1982 edition
Translated by Samuel Kotz
With Afterword of 2006 titled "Empirical inference science"
内容説明・目次
内容説明
Twenty-?ve years have passed since the publication of the Russian version of the book Estimation of Dependencies Based on Empirical Data (EDBED for short). Twen- ?ve years is a long period of time. During these years many things have happened. Looking back, one can see how rapidly life and technology have changed, and how slow and dif?cult it is to change the theoretical foundation of the technology and its philosophy. I pursued two goals writing this Afterword: to update the technical results presented in EDBED (the easy goal) and to describe a general picture of how the new ideas developed over these years (a much more dif?cult goal). The picture which I would like to present is a very personal (and therefore very biased) account of the development of one particular branch of science, Empirical - ference Science. Such accounts usually are not included in the content of technical publications. I have followed this rule in all of my previous books. But this time I would like to violate it for the following reasons. First of all, for me EDBED is the important milestone in the development of empirical inference theory and I would like to explain why. S- ond, during these years, there were a lot of discussions between supporters of the new 1 paradigm (now it is called the VC theory ) and the old one (classical statistics).
目次
Realism and Instrumentalism: Classical Statistics and VC Theory (1960-1980).- Falsifiability and Parsimony: VC Dimension and the Number of Entities (1980-2000).- Noninductive Methods of Inference: Direct Inference Instead of Generalization (2000-...).- The Big Picture.
「Nielsen BookData」 より