Time series analysis and its applications : with R examples
著者
書誌事項
Time series analysis and its applications : with R examples
(Springer texts in statistics)
Springer, c2006
2nd ed
大学図書館所蔵 全32件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 555-568) and index (p. 569-575)
内容説明・目次
内容説明
"Time Series Analysis and Its Applications, Second Edition", presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using non-trivial data illustrate solutions to problems such as evaluating pain perception experiments using magnetic resonance imaging, monitoring a nuclear test ban treaty, evaluating the volatility of an asset, or finding a gene in a DNA sequence. The book is designed to be useful as a text for graduate level students in the physical, biological and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course.Material from the first edition of the text has been updated by adding examples and associated code based on the freeware R statistical package.As in the first edition, modern developments involving categorical time series analysis and the spectral envelope, multivariate spectral methods, long memory series, nonlinear models, longitudinal data analysis, resampling techniques, GARCH models, stochastic volatility models, wavelets, and Monte Carlo Markov chain integration methods are incorporated in the text.
In this edition, the material has been divided into smaller chapters, and the coverage of financial time series, including GARCH and stochastic volatility models, has been expanded. These topics add to a classical coverage of time series regression, univariate and multivariate ARIMA models, spectral analysis and state-space models.
目次
Characteristics of Time Series * Time Series Regression and ARIMA Models * Dynamic Linear Models and Kalman Filtering * Spectral Analysis and Its Applications
「Nielsen BookData」 より