Solid State NMR Spectroscopy for Biopolymers : Principles and Applications
著者
書誌事項
Solid State NMR Spectroscopy for Biopolymers : Principles and Applications
Springer, c2006
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
''Biopolymers'' are polymeric materials of biological origin, including globular, membrane, and fibrous proteins, polypeptides, nucleic acids, po- saccharides, lipids, etc. and their assembly, although preference to respe- ive subjects may be different among readers who are more interested in their biological significance or industrial and/or medical applications. Nevert- less, characterizing or revealing their secondary structure and dynamics may be an equally very important and useful issue for both kinds of readers. Special interest in revealing the 3D structure of globular proteins, nucleic acids, and peptides was aroused in relation to the currently active Structural Biology. X-ray crystallography and multidimensional solution NMR sp- troscopy have proved to be the standard and indispensable means for this purpose. There remain, however, several limitations to this end, if one intends to expand its scope further. This is because these approaches are not always straightforward to characterize fibrous or membrane proteins owing to extreme difficulty in crystallization in the former, and insufficient spectral resolution due to sparing solubility or increased effective molecular mass in the presence of surrounding lipid bilayers in the latter.
目次
Part I Principles
1. Introduction
2. Solid state NMR approach
2.1. CP-MAS and DD-MAS NMR
2.2. Quadrupolar nuclei
3. Brief outline of NMR parameters
3.1. Chemical shifts
3.2. Relaxation parameters
3.3. Dynamics-dependent suppression of peaks
4. Multinuclear approaches
4.1. 31P NMR
4.2. 2H NMR
4.3. 17O NMR
5. Experimental strategies
5.1. Isotope enrichment (labeling)
5.2. Assignment of peaks
5.3. Ultra high-field and ultra high-speed MAS NMR spectroscopy
6. NMR constraints for structural determination
6.1. Orientational constraint
6.2. Interatomic distance
6.3. Torsion angles
6.4. Conformation-dependent 13C chemical shifts
7. Dynamics
7.1. Fast motions with motional frequency >106 Hz
7.2. Intermediate or slow motions with frequency between 106 and 103 Hz
7.3. Very slow motions with frequency < 103 Hz
Part II Applications
8. Hydrogen bonded systems
8.1. Hydrogen bond shifts
8.2. 2H quadrupolar coupling constant
9. Fibrous proteins
9.1. Collagen fibrils
9.2. Elastin
9.3. Cerial proteins
9.4. Silk fibroin
9.5. Keratin
9.6. Bacteriophage coat protein
10. Polysaccharides
10.1. Distinction of polymorphs
10.2. Network structure, dynamics and gelation mechanism
11. Polypeptides as new materials
11.1. Liquid crystalline polypeptides
11.2. Blend system
12. Globular proteins
12.1. (Almost) complete assignment of 13C NMR spectra of globular proteins
12.2. 3D structure: ?-spectrin SH3 domain
12.3. Ligand-binding to globular protein
13. Membrane protein I: dynamic picture
13.1. Bacteriorhodopsin
13.2. Phoborhodopsin and its cognitive transducer
13.3. Diacylgycerol kinase
14. Membrane proteins II: 3D structure
14.1. 3D structure of mechanically aligned membrane proteins
14.2. Secondary structure based on distance constraints
15. Biologically active membrane-associated peptides
15.1. Channel-forrming peptides
15.2. Antimicrobial peptides
15.3. Opioid peptides
15.4. Fusion peptides
15.5. Membrane model system
17. Amyloid and related biomolecules
17.1. Amyloid ?-peptide
17.2. Calcitonin (CT)
「Nielsen BookData」 より