COMPSTAT : proceedings in computational statistics, 17th symposium held in Rome, Italy, 2006
著者
書誌事項
COMPSTAT : proceedings in computational statistics, 17th symposium held in Rome, Italy, 2006
Physica-Verlag, c2006
- タイトル別名
-
COMPSTAT 2006
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
International Association for Statistical Computing The International Association for Statistical Computing (IASC) is a Section of the International Statistical Institute. The objectives of the Association are to foster world-wide interest in e?ective statistical computing and to - change technical knowledge through international contacts and meetings - tween statisticians, computing professionals, organizations, institutions, g- ernments and the general public. The IASC organises its own Conferences, IASC World Conferences, and COMPSTAT in Europe. The 17th Conference of ERS-IASC, the biennial meeting of European - gional Section of the IASC was held in Rome August 28 - September 1, 2006. This conference took place in Rome exactly 20 years after the 7th COMP- STAT symposium which was held in Rome, in 1986. Previous COMPSTAT conferences were held in: Vienna (Austria, 1974); West-Berlin (Germany, 1976); Leiden (The Netherlands, 1978); Edimbourgh (UK, 1980); Toulouse (France, 1982); Prague (Czechoslovakia, 1984); Rome (Italy, 1986); Copenhagen (Denmark, 1988); Dubrovnik (Yugoslavia, 1990); Neuch atel (Switzerland, 1992); Vienna (Austria,1994); Barcelona (Spain, 1996);Bristol(UK,1998);Utrecht(TheNetherlands,2000);Berlin(Germany, 2002); Prague (Czech Republic, 2004).
目次
Classification and Clustering.- Issues of robustness and high dimensionality in cluster analysis.- Fuzzy K-medoids clustering models for fuzzy multivariate time trajectories.- Bootstrap methods for measuring classification uncertainty in latent class analysis.- A robust linear grouping algorithm.- Computing and using the deviance with classification trees.- Estimation procedures for the false discovery rate: a systematic comparison for microarray data.- A unifying model for biclustering.- Image Analysis and Signal Processing.- Non-rigid image registration using mutual information.- Musical audio analysis using sparse representations.- Robust correspondence recognition for computer vision.- Blind superresolution.- Analysis of Music Time Series.- Data Visualization.- Tying up the loose ends in simple, multiple, joint correspondence analysis.- 3 dimensional parallel coordinates plot and its use for variable selection.- Geospatial distribution of alcohol-related violence in Northern Virginia.- Visualization in comparative music research.- Exploratory modelling analysis: visualizing the value of variables.- Density estimation from streaming data using wavelets.- Multivariate Analysis.- Reducing conservatism of exact small-sample methods of inference for discrete data.- Symbolic data analysis: what is it?.- A dimensional reduction method for ordinal three-way contingency table.- Operator related to a data matrix: a survey.- Factor interval data analysis and its application.- Identifying excessively rounded or truncated data.- Statistical inference and data mining: false discoveries control.- Is 'Which model . . .?' the right question?.- Use of latent class regression models with a random intercept to remove the effects of the overall response rating level.- Discrete functional data analysis.- Self organizing MAPS: understanding, measuring and reducing variability.- Parameterization and estimation of path models for categorical data.- Latent class model with two latent variables for analysis of count data.- Web Based Teaching.- Challenges concerning web data mining.- e-Learning statistics - a selective review.- Quality assurance of web based e-Learning for statistical education.- Algorithms.- Genetic algorithms for building double threshold generalized autoregressive conditional heteroscedastic models of time series.- Nonparametric evaluation of matching noise.- Subset selection algorithm based on mutual information.- Visiting near-optimal solutions using local search algorithms.- The convergence of optimization based GARCH estimators: theory and application.- The stochastics of threshold accepting: analysis of an application to the uniform design problem.- Robustness.- Robust classification with categorical variables.- Multiple group linear discriminant analysis: robustness and error rate.
「Nielsen BookData」 より