Dimension theory for ordinary differential equations

書誌事項

Dimension theory for ordinary differential equations

Vladimir A. Boichenko , Gennadij A. Leonov , Volker Reitmann

(Teubner-Texte zur Mathematik, Bd. 141)

Teubner, c2005

大学図書館所蔵 件 / 6

この図書・雑誌をさがす

注記

Literaturverz. S. 415 - 434

内容説明・目次

内容説明

This book is devoted to the estimation of dimension-like characteristics (Hausdorff dimension, fractal dimension, Lyapunov dimension, topological entropy) for attractors (mainly global B-attractors) of ordinary differential equations, time-discrete systems and dynamical systems on finite-dimensional manifolds. The contraction under flows of parameter-dependent outer measures is shown by introducing varying Lyapunov functions or metric tensors in the calculation of singular values. For the attractors of the Henon and Lorenz systems, exact formulae for the Lyapunov dimension are derived.

目次

Basic facts from matrix theory - Attractors, stability and Lyapunov functions - Introduction to dimension theory - Dimension and Lyapunov functions - Dimension estimates for invariant sets of vector fields on manifolds

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ