Multiple time series models
Author(s)
Bibliographic Information
Multiple time series models
(Sage publications series, . Quantitative applications in the social sciences ; no. 07-148)
Sage Publications, c2007
- : pbk
Available at 40 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 92-95) and index
Description and Table of Contents
Description
Many analyses of time series data involve multiple, related variables. Multiple Time Series Models presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available.
Key Features
Offers a detailed comparison of different time series methods and approaches.
Includes a self-contained introduction to vector autoregression modeling.
Situates multiple time series modeling as a natural extension of commonly taught statistical models.
Table of Contents
List of Figures
List of Tables
Series Editor?s Introduction
Preface
1. Introduction to Multiple Time Series Models
1.1 Simultaneous Equation Approach
1.2 ARIMA Approach
1.3 Error Correction or LSE Approach
1.4 Vector Autoregression Approach
1.5 Comparison and Summary
2. Basic Vector Autoregression Models
2.1 Dynamic Structural Equation Models
2.2 Reduced Form Vector Autoregressions
2.3 Relationship of a Dynamic Structural Equation Model to a Vector Autoregression Model
2.4 Working With This Model
2.5 Specification and Analysis of VAR Models
2.6 Other Specification Issues
2.7 Unit Roots and Error Correction in VARs
2.8 Criticisms of VAR
3. Examples of VAR Analyses
3.1 Public Mood and Macropartisanship
3.2 Effective Corporate Tax Rates
3.3 Conclusion
Appendix: Software for Multiple Time Series Models
Notes
References
Index
About the Authors
by "Nielsen BookData"