Basic principles and calculations in chemical engineering
著者
書誌事項
Basic principles and calculations in chemical engineering
(Prentice-Hall international series in the physical and chemical engineering sciences)
Prentice Hall PTR, c2004
7th ed., International ed
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
CD-ROM inside back cover, ISBN: 0131406345
Steam tables on folded sheet in pocket
Includes bibliographical references and index
内容説明・目次
内容説明
This book is intended to serve as an introduction to the principles and techniques used in the field of chemical, petroleum, and environmental engineering. Although the range of subjects deemed to be in the province of chemical engineering has broadened over the last decade, the basic principles involved in chemical engineering remain the same. This book lays a foundation of certain information and skills that can be repeatedly employed in subsequent courses as well as in professional life. Much of the previous edition has been rewritten. One new topic (Chapter 20) on adsorption has been added.Reorganization: Although each chapter has been revised, the sequence of the topics and the format remain about the same. The Seventh edition takes individual topics that were previously in one long chapter, and makes them individual short chapters of them so that readers can feel a sense of accomplishment more rapidly and review more definitively.In addition to the revised learning tutorial placed on CD, the new edition boasts revamped problem solving strategy (now emphasized in all of the examples) and brand new problems to solve (35% of the problems are brand new).
目次
Preface.
Read Me.
Frequently Asked Questions.
I. INTRODUCTION.
1. Dimensions, Units, and Their Conversion.
Units and Dimensions. Operations with Units. Conversion of Units and Conversion Factors. Dimensional Consistency (Homogeneity). Significant Figures. Validation of Problem Solutions.
2. Moles, Density, and Concentration.
The Mole. Density. Specific Gravity. Flow Rate. Mole Fraction and Mass (Weight) Fraction. Analyses of Multicomponent Solutions and Mixtures. Concentration.
3. Choosing A Basis.
4. Temperature.
5. Pressure.
Pressure and Its Units. Measurement of Pressure. Differential Pressure Measurements.
II. MATERIAL BALANCES.
6. Introduction to Material Balances.
The Concept of a Material Balance. Open and Closed Systems. Steady-State and Unsteady-State Systems. Multiple Component Systems. Accounting for Chemical Reactions in Material Balances. Material Balances for Batch and Semi-Batch Processes.
7. A General Strategy for Solving Material Balance Problems.
Problem Solving. The Strategy for Solving Problems.
8. Solving Material Balance Problems for Single Units without Reaction.
9. The Chemical Reaction Equation and Stoichiometry.
Stoichiometry. Terminology for Applications of Stoichiometry.
10. Material Balances for Processes Involving Reaction.
Species Material Balances. Element Material Balances. Material Balances Involving Combustion.
11. Material Balance Problems Involving Multiple Units.
12. Recycle, Bypass, Purge, and the Industrial Application Of Material Balances.
Introduction. Recycle without Chemical Reaction. Recycle with Chemical Reaction. Bypass and Purge. The Industrial Application of Material Balances.
III. GASES, VAPORS, LIQUIDS, AND SOLIDS.
13. Ideal Gases.
The Ideal Gas Law. Ideal Gas Mixtures and Partial Pressure. Material Balances Involving Ideal Gases.
14. Real Gases: Compressibility.
15. Real Gases: Equations of State.
16. Single Component Two-Phase Systems (Vapor Pressure).
Phase Diagrams. Modeling and Predicting Vapor Pressure as a Function of Temperature.
17. Two-Phase Gas-Liquid Systems (Saturation, Condensation, and Vaporization).
Saturation. Condensation. Vaporization.
18. Two-Phase Gas-Liquid Systems (Partial Saturation and Humidity).
Terminology Involved for Partial Saturation. Material Balance Problems Involving Partial Saturation.
19. The Phase Rule and Vapor-Liquid Equilibria.
The Gibbs Phase Rule. Vapor-Liquid Equlibria in Binary Systems.
20. Liquids and Gases in Equilibrium with Solids.
IV. ENERGY BALANCES.
21. Energy: Terminology, Concepts, and Units.
The Terminology Associated with Energy Balances. Types of Energy.
22. Introduction to Energy Balances For Processes Without Reaction.
The Concept of the Conservation of Energy. Energy Balances for Closed, Unsteady-State Systems. Energy Balances for Closed, Steady-State Systems. Energy Balances for Open, Unsteady-State Systems. Energy Balances for Open, Steady-State Systems.
23. Calculation of Enthalpy Changes.
Phase Transitions. Heat Capacity Equations. Tables and Charts to Retrieve Enthalpy Values. Computer Databases.
24. Application Of Energy Balances in the Absence of Chemical Reactions.
Simplifications of the General Energy Balance. The Strategy for Solving Energy Balance Problems. Application of the Energy Balance to Closed Systems. Application of the Energy Balance to Open Systems.
25. Energy Balances: How to Account for Chemical Reaction.
The Standard Heat (Enthalpy) of Formation. The Heat (Enthalpy) of Reaction. Merging the Heat of Formation with the Sensible Heat of a Compound in Making an Energy Balance. The Heat of Combustion.
26. Energy Balances That Include the Effects of Chemical Reaction.
Analysis of the Degrees of Freedom to Include the Energy Balance with Reaction. Applications of Energy Balances in Processes that Include Reactions.
27. Ideal Processes, Efficiency, and the Mechanical Energy Balance.
Ideal Reversible Processes. Efficiency. The Mechanical Energy Balance.
28. Heats of Solution and Mixing.
Heats of Solution, Dissolution, and Mixing. Introducing the Effects of Mixing into the Energy Balance.
29. Humidity (Psychrometric) Charts and Their Use.
Terminology. The Humidity (Psychrometric) Chart. Applications of the Humidity Chart.
V. SUPPLEMENTARY MATERIAL (ON THE ACCOMPANYING CD)
30. Analysis of the Degrees of Freedom in a Steady-State Process.
31. Solving Material and Energy Balances Using Process Simulators (Flowsheeting Codes).
32. Unsteady-State Material and Energy Balances.
VI. APPENDICES.
A. Answers To Self-Assessment Tests.
B. Atomic Weights and Numbers.
C. Table of the Pitzer Z0 and Z1 Factors.
D. Physical Properties of Various Organic and Inorganic Substances.
E. Heat Capacity Equations.
F. Heats of Formation and Combustion.
G. Vapor Pressures.
H. Heats of Solution and Dilution.
I. Enthalpy-Concentration Data.
J. Thermodynamic Charts.
K. Physical Properties of Petroleum Fractions.
L. Solution of Sets of Equations.
M. Fitting Functions to Data.
N. Answers to Selected Problems.
Index.
「Nielsen BookData」 より