Simulation modeling and analysis
著者
書誌事項
Simulation modeling and analysis
(McGraw-Hill series in industrial engineering and management science)
McGraw-Hill, c2007
4th ed
大学図書館所蔵 件 / 全5件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 719-750) and index
内容説明・目次
内容説明
Since the publication of the first edition in 1982, the goal of "Simulation Modeling and Analysis" has always been to provide a comprehensive, state-of-the-art, and technically correct treatment of all important aspects of a simulation study. The book strives to make this material understandable by the use of intuition and numerous figures, examples, and problems. It is equally well suited for use in university courses, simulation practice, and self study. The book is widely regarded as the "bible" of simulation and now has more than 100,000 copies in print. The book can serve as the primary text for a variety of courses; for example: a first course in simulation at the junior, senior, or beginning-graduate-student level in engineering, manufacturing, business, or computer science (Chaps. 1 through 4, and parts of Chaps. 5 through 9). At the end of such a course, the students will be prepared to carry out complete and effective simulation studies, and to take advanced simulation courses; and a second course in simulation for graduate students in any of the above disciplines (most of Chaps. 5 through 12).
After completing this course, the student should be familiar with the more advanced methodological issues involved in a simulation study, and should be prepared to understand and conduct simulation research. It provides an introduction to simulation as part of a general course in operations research or management science (part of Chaps. 1, 3, 5, 6, and 9).
目次
1. Basic Simulation Modeling 2. Modeling Complex Systems 3. Simulation Software 4. Review of Basic Probability and Statistics 5. Building Valid, Credible, and Appropriately Detailed Simulation Models 6. Selecting Input Probability Distributions 7. Random-Number Generators 8. Generating Random Variates 9. Output Data Analysis for a Single System 10. Comparing Alternative System Configurations 11. Variance-Reduction Techniques 12. Experimental Design and Optimization 13. Simulation of Manufacturing Systems
「Nielsen BookData」 より