Springer handbook of electronic and photonic materials
Author(s)
Bibliographic Information
Springer handbook of electronic and photonic materials
Springer Science + Business Media, c2006
Available at / 30 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Contributions from well known and respected researchers throughout the world
Thorough coverage of electronic and opto-electronic materials that today's electrical engineers, material scientists and physicists need
Interdisciplinary approach encompasses research in disciplines such as materials science, electrical engineering, chemical engineering, mechanical engineering, physics and chemistry
Table of Contents
Each chapter has a concise summary that provides a general overview of the subject in the chapter in a clear language. The chapters begin at fundamentals and build up towards advanced concepts and applications. Emphasis is on physical concepts rather than extensive mathematical derivations. Each chapter is full of clear color illustrations that convey the concepts and make the subject matter enjoyable to read and understand. Examples in the chapters have practical applications. Chapters also have numerous extremely useful tables that summarize equations, experimental techniques, and most importantly, properties of various materials. The chapters have been divided into five parts. Each part has chapters that form a coherent treatment of a given area.
Chap. 1 Introduction: Perspectives on Electronic, Optoelectronic, and Photonic Materials
Part A: Fundamental Electronic, Optical, and Magnetic Properties
Part A contains chapters starting from basic concepts and build up to up-to-date knowledge in a logical easy to follow sequence. Part A would be equivalent to a graduate level treatise that starts from basic structural properties to go onto electrical, dielectric, optical, and magnetic properties. Each chapter starts by assuming someone who has completed a degree in physics, chemistry, engineering, or materials science.
Chap. 2 Electrical Conduction in Metals and Semiconductors.- Chap. 3 Optical Properties: Fundamentals and Characterization.- Chap. 4 Magnetic Properties.- Chap. 5 Defects in Monocrystalline Silicon.- Chap. 6 Diffusion in Semiconductors.- Chap. 7 Photoconductivity in Materials Research.- Chap. 8 Electronic Properties of Semiconductor Interfaces.- Chap. 9 Description of Charge Transport in Disordered Materials.- Chap. 10 Dielectric Response -- An Overview.- Chap. 11 Ionic Conduction and Applications
Part B: Growth and Characterization
Part B provides a clear overview of bulk and single-crystal growth, growth techniques (epitaxial crystal growth: LPE, MOVPE, MBE), and the structural, chemical, electrical and thermal characterization of materials. Silicon and II - VI compounds and semiconductors are especially emphasized.
Chap. 12 Bulk Crystal Growth.- Chap. 13 Single Crystal Silicon: Growth and Properties.- Chap. 14 Epitaxial Crystal Growth: LPE, MOVPE, MBE.- Chap. 15 II - VI Compounds: Growth.- Chap. 16 Wide Bandgap II - VI Semiconductors: Growth and Properties.- Chap. 17 Structural Characterization.- Chap. 18 Chemical Analysis.- Chap. 19 Thermal Properties and Characterization.- Chap. 20 Electrical Characterization of Semiconductor Materials and Devices
Part C: Materials for Electronics
Part C covers specific materials such as crystalline Si, microcrystalline Si, GaAs, high-temperature semiconductors, amorphous semiconductors, ferroelectric materials, and thin and thick films.
Chap. 21 Single Crystal Silicon.- Chap. 22 Silicon/Germanium.- Chap. 23 Gallium Arsenide.- Chap. 24 High Temperature Electronic Materials: Silicon Carbide and Diamond.- Chap. 25 Amorphous Semiconductors.- Chap. 26 Amorphous and Microcrystalline Silicon - Preparation and Properties for Devices.- Chap. 27 Ferroelectric Materials.- Chap. 28 Dielectric Materials for Microelectronics.- Chap. 29 Thin Films.- Chap. 30 Thick Films
Part D: Materials for Optoelectronics and Photonics
Part D examines materials that have applications in optoelectronics and photonics. It covers some of the state-of-the-art developments in optoelectronic materials, and covers III - V Ternaries, III-Nitrides, II - VI compounds, quantum wells, photonic crystals, glasses for photonics, nonlinear photonic glasses, nonlinear organic, and luminescent materials.
Chap. 31 III - V Ternary and Quaternary Compounds.- Chap. 32 Group III Nitrides.- Chap. 33 Electron Transport Within the III - V Nitride Semiconductors, GaN, AlN, and InN: A Monte Carlo Analysis.- Chap. 34 Cd-based wide bandgap compounds.- Chap. 35 Doping Aspects of Zn-Based Wide Bandgap Semiconductors.- Chap. 36 II - VI Narrow Bandgap Semiconductors: Optoelectronics.- Chap. 37 Optoelectronic Devices and Materials.- Chap. 38 Liquid Crystals.- Chap. 39 Organic Photoconductors.- Chap. 40 Luminescent Materials.- Chap. 41 Nanoengineered Tunable Photonic Crystals in the Near-IR and Visible.- Chap. 42 Quantum Wells, Superlattices and Bandgap Engineering.- Chap. 43 Glasses for Photonic Integration.- Chap. 44 Optical Nonlinearity in Photonic Glasses.- Chap. 45 Nonlinear Optoelectronic Materials
Part E: Novel Materials and Selected Applications
Part E provides a survey on novel materials and applications such as information recording devices (CD, video, DVD) as well as phase-change optical recording. The chapters also include applications such as solar cells, sensors, photoconductors, and carbon nanotubes. Both ends of the spectrum from research to applications are represented in chapters on molecular electronics and packaging materials.
Chap. 46 Solar Cells and Photovoltaics.- Chap. 47 Silicon on Mechanically Flexible Substrates for Large Area Electronics.- Chap. 48 Photoconductors for X-ray Image Detectors.- Chap. 49 Phase-change Optical Recording.- Chap. 50 Carbon Nanotubes and Bucky Materials.- Chap. 51 Magnetic Information Storage Materials.- Chap. 52 High-Temperature Superconductors.- Chap. 53 Molecular Electronics.- Chap. 54 Organic Materials for Chemical Sensing.- Chap. 55 Packaging Materials
Glossary of Terms
About the Authors
Subject Index
by "Nielsen BookData"