Applied cartesian tensors for aerospace simulations
著者
書誌事項
Applied cartesian tensors for aerospace simulations
(AIAA education series)
American Institute of Aeronautics and Astronautics, c2006
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 205-208) and index
HTTP:URL=http://www.loc.gov/catdir/toc/ecip066/2006000085.html Information=Table of contents
内容説明・目次
内容説明
This book presents a new approach to aerospace flight vehicle equations of motion based on a unifying tensorbased formulation. Covering the fundamental concepts of the geometry of space, applied mechanics, and aerospace engineering analysis, the author builds on these flight mechanics essentials to describe the motion of aircraft and space vehicles. Concepts are amplified by the presentation of aerospace applications in use today and that are tied directly to the material presented. The basic concepts of Cartesian analysis are developed along with the application of tensor notation to engineering analysis. Tensor notation (the Einstein summation convention) is introduced to give the reader exact component equations and to demonstrate its value in multi-variable analysis. By applying the summation notation in the analysis, the author believes that a more complete description of the dynamic problems of aerospace vehicle motion can be offered, and that this approach is already finding applications in aerospace engineering technologies.
目次
- Geometric Concepts in the Absence of Mass and Gravitation
- * The Position Transformation
- * Properties of the Transformation Matrix
- * Euler Angles and the Transformation Matrix
- * Euler's Theorem and the Four Parameter Methods
- * Differentiation of the Transformation Matrix
- * Transformation Equations for Velocity and Acceleration
- * The Motion of a Point Mass in Gravitational Space
- * Point Mass - Mathematical Descriptions
- * The Point Mass and Gravitation
- * Point Mass Motion Relative to Earth-Based Coordinates
- * Point Mass Motion Relative to Space-Based Coordinates
- * N-Body Gravitational Space and Rigid Body Motion
- * N-Body Mass Systems - Mathematical Descriptions
- * Rigid Body Dynamics
- * Flight Vehicle Motion
- * Modeling Gravitational Environments for Aerospace Vehicles
- * Forces and Moments on the Flight Vehicle
- * Flight Vehicle Motion Simulations
- * Space Vehicle Motion Using Mean Orbital Elements
- * Appendices
- * Bibliography
- * Index.
「Nielsen BookData」 より