Quality measures in data mining
著者
書誌事項
Quality measures in data mining
(Studies in computational intelligence, v. 43)
Springer, c2007
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
This book presents recent advances in quality measures in data mining.
目次
Overviews on rule quality.- Choosing the Right Lens: Finding What is Interesting in Data Mining.- A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study.- Association Rule Interestingness Measures: Experimental and Theoretical Studies.- On the Discovery of Exception Rules: A Survey.- From data to rule quality.- Measuring and Modelling Data Quality for Quality-Awareness in Data Mining.- Quality and Complexity Measures for Data Linkage and Deduplication.- Statistical Methodologies for Mining Potentially Interesting Contrast Sets.- Understandability of Association Rules: A Heuristic Measure to Enhance Rule Quality.- Rule quality and validation.- A New Probabilistic Measure of Interestingness for Association Rules, Based on the Likelihood of the Link.- Towards a Unifying Probabilistic Implicative Normalized Quality Measure for Association Rules.- Association Rule Interestingness: Measure and Statistical Validation.- Comparing Classification Results between N-ary and Binary Problems.
「Nielsen BookData」 より