Quality measures in data mining

著者
    • Guillet, Fabrice
    • Hamilton, Howard J
書誌事項

Quality measures in data mining

Fabrice Guillet, Howard J. Hamilton (eds.)

(Studies in computational intelligence, v. 43)

Springer, c2007

この図書・雑誌をさがす
内容説明・目次

内容説明

This book presents recent advances in quality measures in data mining.

目次

Overviews on rule quality.- Choosing the Right Lens: Finding What is Interesting in Data Mining.- A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study.- Association Rule Interestingness Measures: Experimental and Theoretical Studies.- On the Discovery of Exception Rules: A Survey.- From data to rule quality.- Measuring and Modelling Data Quality for Quality-Awareness in Data Mining.- Quality and Complexity Measures for Data Linkage and Deduplication.- Statistical Methodologies for Mining Potentially Interesting Contrast Sets.- Understandability of Association Rules: A Heuristic Measure to Enhance Rule Quality.- Rule quality and validation.- A New Probabilistic Measure of Interestingness for Association Rules, Based on the Likelihood of the Link.- Towards a Unifying Probabilistic Implicative Normalized Quality Measure for Association Rules.- Association Rule Interestingness: Measure and Statistical Validation.- Comparing Classification Results between N-ary and Binary Problems.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA81617033
  • ISBN
    • 9783540449119
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xiv, 313 p.
  • 大きさ
    24 cm
  • 分類
  • 親書誌ID
ページトップへ