Evolutionary scheduling
著者
書誌事項
Evolutionary scheduling
(Studies in computational intelligence, v. 49)
Springer, c2007
大学図書館所蔵 件 / 全8件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
内容説明・目次
内容説明
Evolutionary scheduling is a vital research domain at the interface of artificial intelligence and operational research. This edited book gives an overview of many of the current developments in the large and growing field of evolutionary scheduling. It demonstrates the applicability of evolutionary computational techniques to solve scheduling problems, not only to small-scale test problems, but also fully-fledged real-world problems.
目次
Methodology.- Memetic Algorithms in Planning, Scheduling, and Timetabling.- Landscapes, Embedded Paths and Evolutionary Scheduling.- Classical and Non-Classical Models of Production Scheduling.- Scheduling of Flow-Shop, Job-Shop, and Combined Scheduling Problems using MOEAs with Fixed and Variable Length Chromosomes.- Designing Dispatching Rules to Minimize Total Tardiness.- A Robust Meta-Hyper-Heuristic Approach to Hybrid Flow-Shop Scheduling.- Hybrid Particle Swarm Optimizers in the Single Machine Scheduling Problem: An Experimental Study.- An Evolutionary Approach for Solving the Multi-Objective Job-Shop Scheduling Problem.- Timetabling.- Multi-Objective Evolutionary Algorithm for University Class Timetabling Problem.- Metaheuristics for University Course Timetabling.- Energy Applications.- Optimum Oil Production Planning using an Evolutionary Approach.- A Hybrid Evolutionary Algorithm for Service Restoration in Power Distribution Systems.- Particle Swarm Optimisation for Operational Planning: Unit Commitment and Economic Dispatch.- Evolutionary Generator Maintenance Scheduling in Power Systems.- Networks.- Evolvable Fuzzy Scheduling Scheme for Multiple-ChannelPacket Switching Network.- A Multi-Objective Evolutionary Algorithm for Channel Routing Problems.- Transport.- Simultaneous Planning and Scheduling for Multi-Autonomous Vehicles.- Scheduling Production and Distribution of Rapidly Perishable Materials with Hybrid GA's.- A Scenario-based Evolutionary Scheduling Approach for Assessing Future Supply Chain Fleet Capabilities.- Business.- Evolutionary Optimization of Business Process Designs.- Using a Large Set of Low Level Heuristics in a Hyperheuristic Approach to Personnel Scheduling.- A Genetic-Algorithm-Based Reconfigurable Scheduler.- Evolutionary Algorithm for an Inventory Location Problem.
「Nielsen BookData」 より