A radical approach to real analysis
Author(s)
Bibliographic Information
A radical approach to real analysis
(Classroom resource materials)
Mathematical Association of America, c2007
2nd ed
Related Bibliography 1 items
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 303-304
Includes index
Description and Table of Contents
Description
In the second edition of this MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on infinite summations, differentiability and continuity, and convergence of infinite series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, or as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created.
Table of Contents
- Preface
- 1. Crisis in mathematics: Fourier's series
- 2. Infinite summations
- 3. Differentiability and continuity
- 4. The convergence of infinite series
- 5. Understanding infinite series
- 6. Return to Fourier series
- 7. Epilogue
- A. Explorations of the infinite
- B. Bibliography
- C. Hints to selected exercises.
by "Nielsen BookData"