Fundamentals of environmental sampling and analysis

書誌事項

Fundamentals of environmental sampling and analysis

Chunlong Carl Zhang

John Wiley & Sons, c2007

大学図書館所蔵 件 / 4

この図書・雑誌をさがす

内容説明・目次

内容説明

An integrated approach to understanding the principles of sampling, chemical analysis, and instrumentation This unique reference focuses on the overall framework and why various methodologies are used in environmental sampling and analysis. An understanding of the underlying theories and principles empowers environmental professionals to select and adapt the proper sampling and analytical protocols for specific contaminants as well as for specific project applications. Covering both field sampling and laboratory analysis, Fundamentals of Environmental Sampling and Analysis includes: A review of the basic analytical and organic chemistry, statistics, hydrogeology, and environmental regulations relevant to sampling and analysis An overview of the fundamentals of environmental sampling design, sampling techniques, and quality assurance/quality control (QA/QC) essential to acquire quality environmental data A detailed discussion of: the theories of absorption spectroscopy for qualitative and quantitative environmental analysis; metal analysis using various atomic absorption and emission spectrometric methods; and the instrumental principles of common chromatographic and electrochemical methods An introduction to advanced analytical techniques, including various hyphenated mass spectrometries and nuclear magnetic resonance spectroscopy With real-life case studies that illustrate the principles plus problems and questions at the end of each chapter to solidify understanding, this is a practical, hands-on reference for practitioners and a great textbook for upper-level undergraduates and graduate students in environmental science and engineering.

目次

Preface xvii 1. Introduction to Environmental Data Acquisition 1 1.1 Introduction 1 1.1.1 Importance of Scientifically Reliable and Legally Defensible Data 2 1.1.2 Sampling Error vs. Analytical Error During Data Acquisition 4 1.2 Environmental Sampling 5 1.2.1 Scope of Environmental Sampling 5 1.2.2 Where, When, What, How, and How Many 6 1.3 Environmental Analysis 6 1.3.1 Uniqueness of Modern Environmental Analysis 7 1.3.2 Classical and Modern Analytical and Monitoring Techniques 7 References 9 Questions and Problems 10 2. Basics of Environmental Sampling and Analysis 11 2.1 Essential Analytical and Organic Chemistry 11 2.1.1 Concentration Units 11 2.1.2 Common Organic Pollutants and Their Properties 14 2.1.3 Analytical Precision, Accuracy, and Recovery 16 2.1.4 Detection Limit and Quantitation Limit 17 2.1.5 Standard Calibration Curve 18 2.2 Essential Environmental Statistics 20 2.2.1 Measurements of Central Tendency and Dispersion 20 2.2.2 Understanding Probability Distributions 21 2.2.3 Type I and II Errors: False Positive and False Negative 25 2.2.4 Detection of Outliers 26 2.2.5 Analysis of Censored Data 28 2.2.6 Analysis of Spatial and Time Series Data 29 2.3 Essential Hydrology and Geology 30 2.3.1 Stream Water Flow and Measurement 30 2.3.2 Groundwater Flow in Aquifers 31 2.3.3 Groundwater Wells 32 2.4 Essential Knowledge of Environmental Regulations 35 2.4.1 Major Regulations Administrated by the U.S. EPA 35 2.4.2 Other Important Environmental Regulations 35 References 37 Questions and Problems 39 3. Environmental Sampling Design 45 3.1 Planning and Sampling Protocols 45 3.1.1 Data Quality Objectives 46 3.1.2 Basic Considerations of Sampling Plan 48 3.2 Sampling Environmental Population 49 3.2.1 Where (Space) and When (Time) to Sample 49 3.2.2 Obtain Representative Samples from Various Matrices 49 3.3 Environmental Sampling Approaches: Where and When 52 3.3.1 Judgmental Sampling 52 3.3.2 Simple Random Sampling 53 3.3.3 Stratified Random Sampling 54 3.3.4 Systematic Sampling 56 3.3.5 Other Sampling Designs 57 3.4 Estimating Sample Numbers: How Many Samples are Required 61 References 63 Questions and Problems 63 4. Environmental Sampling Techniques 69 4.1 General Guidelines of Environmental Sampling Techniques 69 4.1.1 Sequence of Sampling Matrices and Analytes 70 4.1.2 Sample Amount 70 4.1.3 Sample Preservation and Storage 71 4.1.4 Selection of Sample Containers 74 4.1.5 Selection of Sampling Equipment 76 4.2 Techniques for Sampling Various Media: Practical Approaches and Tips 83 4.2.1 Surface Water and Wastewater Sampling 84 4.2.2 Groundwater Sampling 86 4.2.3 Soil and Sediment Sampling 89 4.2.4 Hazardous Waste Sampling 90 4.2.5 Biological Sampling 92 4.2.6 Air and Stack Emission Sampling 92 References 93 Questions and Problems 94 5. Methodology and Quality Assurance/Quality Control of Environmental Analysis 97 5.1 Overview on Standard Methodologies 98 5.1.1 The U.S. EPA Methods for Air, Water, Wastewater, and Hazardous Waste 98 5.1.2 Other Applicable Methods: APHA/ASTM/OSHA/NIOSH/USGS/AOAC 103 5.2 Selection of Standard Methods 108 5.2.1 Methods for Sample Preparation 109 5.2.2 Methods for Physical, Biological, and General Chemical Parameters 111 5.2.3 Methods for Volatile Organic Compounds (VOCs) 112 5.2.4 Methods for Semivolatile Organic Compounds (SVOCs) 113 5.2.5 Methods for Other Pollutants and Compounds of Emerging Environmental Concerns 113 5.3 Field Quality Assurance/Quality Control (QA/QC) 115 5.3.1 Types of Field QA/QC Samples 116 5.3.2 Numbers of Field QA/QC Samples 118 5.4 Analytical Quality Assurance/Quality Control 118 5.4.1 Quality Control Procedures for Sample Preparation 118 5.4.2 Quality Control Procedures During Analysis 119 References 122 Questions and Problems 123 6. Common Operations and Wet Chemical Methods in Environmental Laboratories 127 6.1 Basic Operations in Environmental Laboratories 128 6.1.1 Labware Cleaning Protocols for Trace Analysis 128 6.1.2 Chemical Reagent Purity, Standard, and Reference Materials 129 6.1.3 Volumetric Glassware and Calibration 132 6.1.4 Laboratory Health, Safety, and Emergency First Aid 134 6.1.5 Waste Handling and Disposal 136 6.2 Wet Chemical Methods and Common Techniques in Environmental Analysis 137 6.2.1 Gravimetric and Volumetric Wet Chemical Methods 137 6.2.2 Common Laboratory Techniques 138 6.3 Analytical Principles for Common Wet Chemical Methods 141 6.3.1 Moisture in Solid and Biological Samples 141 6.3.2 Solids in Water, Wastewater, and Sludge (TS, TSS, TDS, VS) 141 6.3.3 Acidity, Alkalinity, and Hardness of Waters 142 6.3.4 Oxygen Demand in Water and Wastewater (DO, BOD and COD) 145 6.3.5 Oil and Grease in Water and Wastewater 148 6.3.6 Residual Chlorine and Chloride in Drinking Water 149 6.3.7 Ammonia in Wastewater 152 6.3.8 Cyanide in Water, Wastewater and Soil Extract 153 6.3.9 Sulfide in Water and Waste 154 References 155 Questions and Problems 155 7. Fundamentals of Sample Preparation for Environmental Analysis 159 7.1 Overview on Sample Preparation 160 7.1.1 Purpose of Sample Preparation 160 7.1.2 Types of Sample Preparation 161 7.2 Sample Preparation for Metal Analysis 162 7.2.1 Various Forms of Metals and Preparation Methods 162 7.2.2 Principles of Acid Digestion and Selection of Acid 163 7.2.3 Alkaline Digestion and Other Extraction Methods 165 7.3 Extraction for SVOC and Non-VOC from Liquid or Solid Samples 168 7.3.1 Separatory Funnel and Continuous Liquid-Liquid Extraction (LLE) 168 7.3.2 Solid Phase Extraction 171 7.3.3 Solid Phase Microextraction 173 7.3.4 Soxhlet and Automatic Soxhlet Extraction (Soxtec) 174 7.3.5 Ultrasonic Extraction 176 7.3.6 Pressured Fluid Extraction 177 7.3.7 Supercritical Fluid Extraction 177 7.3.8 Comparison and Selection of Organic Extraction Methods 178 7.4 Post-Extraction Clean-up of Organic Compounds 179 7.4.1 Theories and Operation Principles of Various Clean-up Methods 179 7.4.2 Recommended Clean-up Method for Selected Compounds 181 7.5 Derivatization of Non-VOC for Gas Phase Analysis 182 7.6 Sample Preparation for VOC, Air and Stack Gas Emission 183 7.6.1 Dynamic Headspace Extraction (Purge-and-Trap) 183 7.6.2 Static Headspace Extraction 184 7.6.3 Azeotropic and Vacuum Distillation 185 7.6.4 Volatile Organic Sampling Train 186 References 187 Questions and Problems 187 8. UV-Visible and Infrared Spectroscopic Methods in Environmental Analysis 190 8.1 Introduction to the Principles of Spectroscopy 191 8.1.1 Understanding the Interactions of Various Radiations with Matter 191 8.1.2 Origins of Absorption in Relation to Molecular Orbital Theories 193 8.1.3 Molecular Structure and UV-Visible/Infrared Spectra 200 8.1.4 Quantitative Analysis with Beer-Lambert's Law 204 8.2 UV-Visible Spectroscopy 206 8.2.1 UV-Visible Instrumentation 206 8.2.2 UV-VIS as a Workhorse in Environmental Analysis 208 8.3 Infrared Spectroscopy 211 8.3.1 Fourier Transform Infrared Spectrometers (FTIR) 211 8.3.2 Dispersive Infrared Instruments (DIR) 213 8.3.3 Nondispersive Infrared Instruments (NDIR) 214 8.3.4 Applications in Industrial Hygiene and Air Pollution Monitoring 214 8.4 Practical Aspects of UV-Visible and Infrared Spectrometry 215 8.4.1 Common Tips for UV-Visible Spectroscopic Analysis 215 8.4.2 Sample Preparation for Infrared Spectroscopic Analysis 216 References 217 Questions and Problems 218 9. Atomic Spectroscopy for Metal Analysis 220 9.1 Introduction to the Principles of Atomic Spectroscopy 221 9.1.1 Flame and Flameless Atomic Absorption 221 9.1.2 Inductively Coupled Plasma Atomic Emission 225 9.1.3 Atomic X-ray Fluorescence 227 9.2 Instruments for Atomic Spectroscopy 227 9.2.1 Flame and Flameless Atomic Absorption 227 9.2.2 Cold Vapor and Hydride Generation Atomic Absorption 229 9.2.3 Inductively Coupled Plasma Atomic Emission 232 9.2.4 Atomic X-ray Fluorescence 233 9.3 Selection of the Proper Atomic Spectroscopic Techniques 235 9.3.1 Comparison of Detection Limits and Working Range 235 9.3.2 Comparison of Interferences and Other Considerations 236 9.4 Practical Tips to Sampling, Sample Preparation, and Metal Analysis 240 References 243 Questions and Problems 243 10. Chromatographic Methods for Environmental Analysis 246 10.1 Introduction to Chromatography 247 10.1.1 Types of Chromatography and Separation Columns 247 10.1.2 Common Stationary Phases: The Key to Separation 249 10.1.3 Other Parameters Important to Compound Separation 251 10.1.4 Terms and Theories of Chromatogram 254 10.1.5 Use of Chromatograms for Qualitative and Quantitative Analysis 258 10.2 Instruments of Chromatographic Methods 258 10.2.1 Gas Chromatography 258 10.2.2 High Performance Liquid Chromatography (HPLC) 260 10.2.3 Ion Chromatography 264 10.2.4 Supercritical Fluid Chromatography 265 10.3 Common Detectors for Chromatography 266 10.3.1 Detectors for Gas Chromatography 267 10.3.2 Detectors for High Performance Liquid Chromatography 272 10.3.3 Detectors for Ion Chromatography 274 10.4 Applications of Chromatographic Methods in Environmental Analysis 275 10.4.1 Gases, Volatile, and Semivolatile Organics with GC 276 10.4.2 Semivolatile and Nonvolatile Organics with HPLC 278 10.4.3 Ionic Species with IC 278 10.5 Practical Tips to Chromatographic Methods 279 10.5.1 What Can and Cannot be Done with GC and HPLC 279 10.5.2 Development for GC and HPLC Methods 280 10.5.3 Overview on Maintenance and Troubleshooting 281 References 284 Questions and Problems 285 11. Electrochemical Methods for Environmental Analysis 289 11.1 Introduction to Electrochemical Theories 290 11.1.1 Review of Redox Chemistry and Electrochemical Cells 290 11.1.2 General Principles of Electroanalytical Methods 292 11.1.3 Types of Electrodes and Notations for Electrochemical Cells 295 11.2 Potentiometric Applications in Environmental Analysis 296 11.2.1 Measurement of pH 296 11.2.2 Measurement of Ions by Ion Selective Electrodes (ISEs) 298 11.2.3 Potentiometric Titration (Indirect Potentiometry) 299 11.3 Voltammetric Applications in Environmental Analysis 300 11.3.1 Measurement of Dissolved Oxygen 300 11.3.2 Measurement of Anions by Amperometric Titration 302 11.3.3 Measurement of Metals by Anodic Stripping Voltammetry (ASV) 303 References 305 Questions and Problems 306 12. Other Instrumental Methods in Environmental Analysis 309 12.1 Hyphenated Mass Spectrometric Methods and Applications 310 12.1.1 Atomic Mass Spectrometry (ICP-MS) 310 12.1.2 Molecular Mass Spectrometry (GC-MS and LC-MS) 313 12.1.3 Mass Spectrometric Applications in Environmental Analysis 320 12.2 Nuclear Magnetic Resonance Spectroscopy (NMR) 322 12.2.1 NMR Spectrometers and the Origin of NMR Signals 322 12.2.2 Molecular Structures and NMR Spectra 325 12.2.3 Applications of NMR in Environmental Analysis 329 12.3 Miscellaneous Methods 329 12.3.1 Radiochemical Analysis 329 12.3.2 Surface and Interface Analysis 333 12.3.3 Screening Methods Using Immunoassay 334 References 335 Questions and Problems 336 Experiments 339 Experiment 1. Data Analysis and Statistical Treatment: A Case Study on Ozone Concentrations in Cities of Houston-Galveston Area 340 Experiment 2. Collection and Preservation of Surface Water and Sediment Samples and Field Measurement of Several Water Quality Parameters 344 Experiment 3. Gravimetric Analysis of Solids and Titrimetric Measurement of Alkalinity of Streams and Lakes 348 Experiment 4. Determination of Dissolved Oxygen (DO) by Titrimetric Winkler Method 352 Experiment 5. Determination of Chemical Oxygen Demand (COD) in Water and Wastewater 357 Experiment 6. Determination of Nitrate and Nitrite in Water by UV-Visible Spectrometry 362 Experiment 7. Determination of Anionic Surfactant (Detergent) by Liquid-Liquid Extraction Followed by Colorimetric Methods 366 Experiment 8. Determination of Hexavalent and Trivalent Chromium (Cr6+ and Cr3+) in Water by Visible Spectrometry 370 Experiment 9. Determination of Greenhouse Gases by Fourier Transform Infrared Spectrometer 374 Experiment 10. Determination of Metals in Soil-Acid Digestion and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 378 Experiment 11. Determination of Explosives Compounds in a Contaminated Soil by High Performance Liquid Chromatography (HPLC) 382 Experiment 12. Measurement of Headspace Chloroethylene by Gas Chromatography with Flame Ionization Detector (GC-FID) 386 Experiment 13. Determination of Chloroethylene by Gas Chromatography with Electron Capture Detector (GC-ECD) 390 Experiment 14. Use of Ion Selective Electrode to Determine Trace Level of Fluoride in Drinking and Natural Water 392 Experiment 15. Identification of BTEX and Chlorobenzene Compounds by Gas Chromatography-Mass Spectrometry (GC-MS) 396 Appendices 402 A. Common Abbreviations and Acronyms 402 B. Structures and Properties of Important Organic Pollutants 407 C1. Standard Normal Cumulative Probabilities 417 C2. Percentiles of t-Distribution 418 C3. Critical Values for the F-Distribution 419 D. Required Containers, Preservation Techniques, and Holding Times 420 Index 423

「Nielsen BookData」 より

詳細情報

ページトップへ