Microstructural randomness and scaling in mechanics of materials
著者
書誌事項
Microstructural randomness and scaling in mechanics of materials
(Modern mechanics and mathematics)
Taylor & Francis, c2008
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
An area at the intersection of solid mechanics, materials science, and stochastic mathematics, mechanics of materials often necessitates a stochastic approach to grasp the effects of spatial randomness. Using this approach, Microstructural Randomness and Scaling in Mechanics of Materials explores numerous stochastic models and methods used in the mechanics of random media and illustrates these in a variety of applications.
The book first offers a refresher in several tools used in stochastic mechanics, followed by two chapters that outline periodic and disordered planar lattice (spring) networks. Subsequent chapters discuss stress invariance in classical planar and micropolar elasticity and cover several topics not yet collected in book form, including the passage of a microstructure to an effective micropolar continuum.
After forming this foundation in various methods of stochastic mechanics, the book focuses on problems of microstructural randomness and scaling. It examines both representative and statistical volume elements (RVEs/SVEs) as well as micromechanically based stochastic finite elements (SFEs). The author also studies nonlinear elastic and inelastic materials, the stochastic formulation of thermomechanics with internal variables, and wave propagation in random media.
The concepts discussed in this comprehensive book can be applied to many situations, from micro and nanoelectromechanical systems (MEMS/NEMS) to geophysics.
目次
Preface. Basic Random Media Models. Random Processes and Fields. Planar Lattice Models: Periodic Topologies and Elastostatics. Lattice Models: Rigidity, Randomness, Dynamics, and Optimality. Two- versus Three-Dimensional Classical Elasticity. Two- versus Three-Dimensional Micropolar Elasticity. Mesoscale Bounds for Linear Elastic Microstructures. Random Field Models and Stochastic Finite Elements. Hierarchies of Mesoscale Bounds for Nonlinear and Inelastic Microstructures. Mesoscale Response in Thermomechanics of Random Media. Waves and Wavefronts in Random Media. Bibliography. Index.
「Nielsen BookData」 より