Springer handbook of experimental fluid mechanics

書誌事項

Springer handbook of experimental fluid mechanics

Cameron Tropea, Alexander L. Yarin, John F. Foss (eds.)

Springer, c2007

  • : [without DVD-ROM]

大学図書館所蔵 件 / 47

この図書・雑誌をさがす

注記

Some copies without DVD-ROM

"With DVD-ROM, 1240 figures and 123 tables"

Includes bibliographical references and index

内容説明・目次

巻冊次

ISBN 9783540251415

内容説明

This key text is a major reference work - a totally authoritative handbook on a major current topic. It consolidates state-of-the-art information from the large number of disciplines used in Experimental Fluid Mechanics into a readable desk reference book. It comprises four parts: Experiments in Fluid Mechanics, Measurement of Primary Quantities, Specific Experimental Approaches, and Analyses and Post-Processing of Data. The book has been prepared for physicists and engineers in research and development in universities, in industry and in other research institutions. Both experimental methodology and techniques are covered fundamentally and for a wide range of application fields. A generous use of citations directs the reader to additional material on each subject.

目次

  • Introduction The expression: "analytical work", often connotes an effort in which basic expressions are combined to analyze a given problem and to derive new information and insight from the resulting mathematical steps of the analysis. Specifically, having started with the appropriate relationships and bringing appropriate mathematical manipulations to the task, the analyst is able to create new information to address the motivating question(s). A central organizing theme of this handbook is that 'experimental fluid mechanics" can be understood as a parallel activity to that described above. The motivating questions will set the context for the experiment. The experiment will be established as a boundary value problem in which the experimentalist will address all aspects of the boundary conditions that will influence the "solution." If a transient or an evolving solution is sought, the appropriate initial conditions will similarly be addressed. Having established these conditions, the solution to the boundary value problem will be revealed in the experimental data that will - ideally - not be contaminated by unintended or unknown perturbing effects and that will be fully converged if statistical average values are sought. Part A Experiments in Fluid Mechanics The objective of Part A is to establish the fundamental concepts and equations that undergird experimental fluid mechanics. The first chapter: addresses both the governing equations and the constitutive equations for Newtonian and non-Newtonian fluids. Chapter 2 provides the systematic bases for model testing and the scaling of experimental results. Sections 2.1 through 2.7 derive similitude parameters (Reynolds number, Froude number, etc.) from the governing equations and the boundary conditions. Dimensional analysis (Sect. 2.2) provides a rational approach for the organization and interpretation of experimental data
  • Sect. 2.3, self-similarity, documents known flow fields that exhibit this condition and it provides guidance on what other flows may exhibit this behavior. The encyclopedic presentation of examples will allow the reader to comprehend the universal features of both complete and incomplete self-similarity. Chap. 1 The Experiment as a Boundary-Value Problem Chap. 2 Nondimensional Representation of the Boundary-Value Problem Part B Measurement of Primary Quantities The objective of Part B is to provide specific information to the reader on the following primary quantities: material properties (Chap. 3), flow field properties (Chap. 4 - pressure, Chap. 5 - velocity, vorticity, Mach number, Chap. 6 - spatial density variations and Chap. 7 - temperature and heat flux) and forces and moments (Chap. 8). Chapter 3 is focused on providing quantitative information for the material properties, the sources of this information and the associated confidence levels for the given data. Chapters 4 through 8 provide comprehensive guidance to the reader on: i) the objectives, ii) the available equipment, iii) the utilization techniques, and iv) the post-processing of the primitive information for the stated quantities. Chap. 3 Material Properties: Measurement and Data Chap. 4 Pressure Measurement Systems Chap. 5 Velocity, Vorticity and Mach Number Chap. 6 Spatial Density Variations Chap. 7 Temperature, Concentration and Heat Flux Chap. 8 Forces and Moments Part C Specific Experimental Approaches Building on the previous two parts of this Springer Handbook, which have dealt with the fundamental concepts and equations that undergrid experimental fluid mechanics and the measurement of primary quantities, respectively, Part C addresses experimental fluid mechanics from an application point of view. According to application, often unique and specific forms of equipment, experimental procedure, or analysis and interpretation of results have been developed. It is the purpose of Part C to elucidate a selection of such application areas, in particular measurements of non-Newtonian flows, turbulence, flow visualization, wall-bounded flows, surface topology, turbomachines, hydraulics, aerodynamics, atmospheric and oceanographic measurements, combustion diagnostics and electrohydrodynamic systems. Chap. 9 Non-Newtonian Flows Chap. 10 Measurement of Turbulent Flows Chap. 11 Flow Visualization Chap. 12 Wall-Bounded Flows Chap. 13 Surface Topology Chap. 14 Turbomachines Chap. 15 Hydraulics Chap. 16 Aerodynamics Chap. 17 Atmospheric Measurements Chap. 18 Oceanographic Measurements Chap. 19 The No-Slip Boundary Condition Chap. 20 Combustion Diagnostics Chap. 21 Electrohydrodynamic Systems Part D Analyses and Post-Processing of Data This final part of the Springer Handbook is actually meant to be a reference source about single and data processing techniques commonly encountered in fluid mechanics. These topics have been complemented by a section discussing data acquisition by imaging detectors, a topic becoming increasingly important for optical measurement techniques. These are all subjects, which in their development are not naturally associated with fluid mechanics
  • hence Part D attempts to collect information from many diverse sources and present them conveniently to the fluid mechanic researcher. Topics covered in this part include fundamental topics of signal and data processing transforms (Fourier, Hilbert, wavelet), proper orthogonal decomposition and stochastic estimation. This is followed by a discussion of estimator expectation and variance and the influence of noise on these quantities. The Cramer-Rao Lower Bound (CRLB) is introduced and developed for several common signal processing examples from fluid mechanics. Imaging detectors and measures of their performance are then discussed in detail before closing with a chapter on image processing and motion analysis, two topics especially relevant for the Particle Image Velocity (PIV) measurement technique. Chap. 22 Review of Some Fundamentals Chap. 23 Fundamentals of Data Processing Chap. 24 Data Acquisition Chap. 25 Data Analyses About the Authors Subject Index
巻冊次

: [without DVD-ROM] ISBN 9783662491621

内容説明

This Handbook consolidates authoritative and state-of-the-art information from the large number of disciplines used in Experimental Fluid Mechanics into a readable desk reference book. It comprises four parts: Experiments in Fluid Mechanics, Measurement of Primary Quantities, Specific Experimental Approaches, and Analyses and Post-Processing of Data. It has been prepared for physicists and engineers in research and development in universities, industry and in governmental research institutions or national laboratories. Both experimental methodology and techniques are covered fundamentally and for a wide range of application fields. A generous use of citations directs the reader to additional material on each subject.

目次

Introduction.- Part A. Experiments in Fluid Mechanics.- Part B. Measurement of Primary Quantities.- Part C. Specific Experimental Approaches.- Part D. Analyses and Post-Processing of Data.- About the Authors.- Subject Index.

「Nielsen BookData」 より

詳細情報

ページトップへ