Low-power low-voltage sigma-delta modulators in nanometer CMOS
著者
書誌事項
Low-power low-voltage sigma-delta modulators in nanometer CMOS
(The Kluwer international series in engineering and computer science, 868)
Springer, 2006
注記
Includes bibliographical references and index
HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0713/2007270705-d.html Information=Publisher description
内容説明・目次
内容説明
this book is not suitable for the bookstore catalogue
目次
Abstract Contents List of Tables List of Figures Symbols and Abbreviations Physical Definitions 1 Introduction 1.1 Motivation 1.2 Outline of the work 2 ADCs in Deep-Submicron CMOS Technologies 2.1 Introduction 2.2 Scaling-Down of CMOS Technologies 2.2.1 Driving Force of the CMOS Scaling-Down 2.2.2 Moving Into Deep-Submicron CMOS Technologies 2.3 Impact of Moving Into Deep-Submicron CMOS to Analog Circuits 2.3.1 Decreased Supply Voltage 2.3.2 Impact on Transistor Intrinsic Gain 2.3.3 Impact on Device Matching 2.3.4 Impact on Device Noise 2.4 ADCs In Deep-Submicron CMOS 2.4.1 Decreased Signal Swing 2.4.2 Degraded Transistor Characteristics 2.4.3 Distortion 2.4.4 Switch Driving 2.4.5 Improved Device Matching 2.4.6 Digital Circuits Advantages 2.5 Conclusion 3 Principle of sigma-delta ADC 3.1 Introduction 3.2 Basic Analog to Digital Conversion 3.3 Oversampling and Noise Shaping 3.3.1 Oversampling 3.3.2 Noise Shaping 3.3.3 sigma-delta modulator 3.3.4 PerformanceMetrics for the sigma-delta ADC 3.4 Traditional sigma-delta ADC Topology 3.4.1 Single-Loop Single-Bit sigma-delta Modulators 3.4.2 Single-Loop Multibit sigma-delta Modulators 3.4.3 Cascaded sigma-delta Modulators 3.5 Conclusion 4 Low-Power Low-Voltage sigma-delta ADC Design in Deep-Submicron CMOS: Circuit Level Approach 4.1 Introduction 4.2 Low-Voltage Low-Power OTA Design 4.2.1 Gain Enhanced Current Mirror OTA Design 4.2.2 A Test Gain-Enhanced Current Mirror OTA 4.2.3 Implementation and Measurement Results 4.2.4 Two-Stage OTA Design 4.3 Low-Voltage Low-Power sigma-delta ADC Design 4.3.1 Impact of Circuit Nonidealities to sigma-delta ADC Performance 4.3.2 Modulator Topology Selection 4.3.3 OTA Topology Selection 4.3.4 Transistor Biasing 4.3.5 Scaling of Integrators 4.4 A 1-V 140-Wsigma-delta modulator in 90-nm CMOS 4.4.1 Building Block Circuits Design 4.4.2 Implementation 4.4.3 Measurement Results 4.5 Measurements on PSRR and Low-Frequency Noise Floor 4.5.1 Introduction of PSRR 4.5.2 PSRR Measurement Setup 4.5.3 PSRR Measurement Results 4.5.4 Measurement on Low-Frequency Noise Floor 4.6 Conclusion 5 Low-Power Low-Voltage sigma-delta ADC Design in Deep-Submicron CMOS: System Level Approach 5.1 Introduction 5.2 The Full Feedforward sigma-delta ADC Topology 5.2.1 Single-Loop Single-Bit Full Feedforward sigma-delta Modulators 5.2.2 Single-Loop Multibit Full Feedforward sigma-delta Modulators 5.2.3 Cascaded Full Feedforward sigma-delta Modulators 5.3 Linearity Analysis of sigma-delta ADC 5.3.1 Non-LinearitiesModeling in sigma-delta ADC 5.3.2 Non-Linear OTA Gain Modeling in sigma-delta ADC 5.3.3 Linearity Performance Comparison 5.4 Circuit Implementation of the Full Feedforward sigma-delta Modulator 5.5 A 1.8-V 2-MS/s sigma-delta Modulator in 0.18-m CMOS 5.5.1 Implementation 5.5.2 Measurement results 5.6 A 1-V 1-MS/s sigma-delta Modulator in 0.13-m CMOS 5.6.1 Implementation 5.6.2 Measurement Results 5.7 Multibit Full Feedforward sigma-delta Modulator Design 5.7.1 Optimized Loop Coefficients 5.7.2 Circuit Implementation 5.8 Conclusion 6 Flash ADC Design in Deep-Submicron CMOS 6.1 Introduction 6.2 Mismatch Study in Deep-Submicron CMOS Technologies 6.2.1 Mismatch of Components
「Nielsen BookData」 より