Computational many-particle physics
Author(s)
Bibliographic Information
Computational many-particle physics
(Lecture notes in physics, 739)
Springer, c2008
- :pbk.
Available at 23 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Table of Contents
Molecular Dynamics.- to Molecular Dynamics.- Wigner Function Quantum Molecular Dynamics.- Classical Monte Carlo.- The Monte Carlo Method, an Introduction.- Monte Carlo Methods in Classical Statistical Physics.- The Monte Carlo Method for Particle Transport Problems.- Kinetic Modelling.- The Particle-in-Cell Method.- Gyrokinetic and Gyrofluid Theory and Simulation of Magnetized Plasmas.- Semiclassical Approaches.- Boltzmann Transport in Condensed Matter.- Semiclassical Description of Quantum Many-Particle Dynamics in Strong Laser Fields.- Quantum Monte Carlo.- World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons.- Autocorrelations in Quantum Monte Carlo Simulations of Electron-Phonon Models.- Diagrammatic Monte Carlo and Stochastic Optimization Methods for Complex Composite Objects in Macroscopic Baths.- Path Integral Monte Carlo Simulation of Charged Particles in Traps.- Ab-Initio Methods in Physics and Chemistry.- Ab-Initio Approach to the Many-Electron Problem.- Ab-Initio Methods Applied to Structure Optimization and Microscopic Modelling.- Effective Field Approaches.- Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems.- Local Distribution Approach.- Iterative Methods for Sparse Eigenvalue Problems.- Exact Diagonalization Techniques.- Chebyshev Expansion Techniques.- The Density Matrix Renormalisation Group: Concepts and Applications.- The Conceptual Background of Density-Matrix Renormalization.- Density-Matrix Renormalization Group Algorithms.- Dynamical Density-Matrix Renormalization Group.- Studying Time-Dependent Quantum Phenomena with the Density-Matrix Renormalization Group.- Applications of Quantum Information in the Density-Matrix Renormalization Group.- Density-Matrix Renormalization Group for Transfer Matrices: Static and Dynamical Properties of 1D Quantum Systems at Finite Temperature.- Concepts of High Performance Computing.- Architecture and Performance Characteristics of Modern High Performance Computers.- Optimization Techniques for Modern High Performance Computers.
by "Nielsen BookData"