Hydromagnetic waves in the magnetosphere and the ionosphere
著者
書誌事項
Hydromagnetic waves in the magnetosphere and the ionosphere
(Astrophysics and space science library, v. 353)
Springer, c2007
大学図書館所蔵 件 / 全7件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Here is a fascinating text that integrates topics pertaining to all scales of the MHD-waves, emphasizing the linkages between the ULF-waves below the ionosphere on the ground and magnetospheric MHD-waves. It will be most helpful to graduate and post-graduate students, familiar with advanced calculus, who study the science of MHD-waves in the magnetosphere and ionosphere. The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on the Earth and in Space.
目次
Acknowledgments. Preface. Introduction. 1 PARTIALLY IONIZED PLASMA. 1.1 Introduction. 1.2 Comments on the plasma dynamics. 1.3 Electromagnetic field equations. 1.4 Dielectric permeability and conductivity. 1.5 Dispersion equation. 2 ELECTRODYNAMIC PROPERTIES OF SPACE. 2.1 The solar wind and the Earth's magnetosphere. 2.2 Ionosphere. 2.3 Atmosphere. 2.4 Summary. 3 ULF-WAVES ON THE GROUND AND IN SPACE. 3.1 Introduction. 3.2 The physical pattern. 3.3 ULF-waves on the ground and in space. 4 MAGNETOHYDRODYNAMIC WAVES. 4.1 MHD equations. 4.2 Homogeneous plasma. 4.3 Inhomogeneous plasma. 5 HYDROMAGNETIC RESONATORS. 5.1 Model and basic equations. 5.2 Dungey's problem. 5.3 Explicit eigenmodes. 5.4 Field-Line Resonance (FLR) frequencies. 5.5 FLR-equations. 5.6 FLR-field structure. 5.7 Global and surface oscillation modes. 5.8 Uncoupled Alfven and FMS-modes. 5.9 Coupling of Alfven and FMS-waves. 5.10 Summary. 6 FLR IN PLASMA CONFIGURATIONS. 6.1 Introduction. 6.2 2D inhomogeneous plasma. Uniform magnetic field. 6.3 MHD-waves in a curvilinear magnetic field. 6.4 FLR in the dipole geomagnetic field. 6.5 Numerical simulation. 6.6 Summary. 7 MHD-WAVES IN LAYERED MEDIA. 7.1 Introduction. 7.2 Model and basic equations. 7.3 Atmospheric and ground fields. 7.4 `Thin' ionosphere. 7.5 Homogeneous magnetosphere. 7.6 Propagation along a meridian. 7.7 Small-scale perturbations. 7.8 Numerical examples. 7.9 Discussion. 8 PROPAGATION of MHD-BEAMS. 8.1 Introduction. 8.2 Coordinate dependencies. 8.3 Small distances. 8.4 Large distances. 8.5 Summary. 9 INHOMOGENEOUS IONOSPHERE. 9.1 Quasi-stationary approximation. 9.2 Numerical modeling. 9.3 Experimental verification of the MHD-wave polarization. 10 EFFECTIVE CONDUCTIVITY of a CLOUDY IONOSPHERE. 10.1 Introduction. 10.2 Existing theories. 10.3 Inhomogeneous plasma. 10.4 Discussion. 11 ULF-SOUNDING OF MAGNETOSPHERE AND EARTH. 11.1 Introduction.11.2 Inverse problem of FLR. 11.3 Ground-based magnetotelluric sounding. 11.4 The satellite electromagnetic sounding of Earth. 12 MHD-WAVE EXPOSURE ON THE IONOSPHERE. 12.1 The Doppler effect provoked by an MHD-wave. 12.2 TEC modulation by an MHD-wave. 13 MHD-WAVE GENERATION BY HF-HEATING. 13.1 Introduction. 13.2 Ionospheric heating. 13.3 Kinetics of the E-layer in a strong HF-wave. 13.4 Ionospheric conductivity. 14 ACTIVE CLOUD RELEASES AND MHD-EMISSION. 14.1 Introduction. 14.2 MHD-pulse initiation. 15 MHD AFTER-EFFECTS OF A SOUND IMPACT. 15.1 Foundation of the theory. 15.2 Acoustic shock. Experiment. References. Index. List of Notations.
「Nielsen BookData」 より