Fundamentals of applied electromagnetics
著者
書誌事項
Fundamentals of applied electromagnetics
Pearson Prentice Hall, c2007
5th ed
- タイトル別名
-
Applied electromagnetics
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 457-458) and index
内容説明・目次
内容説明
For one- or two-semester courses in Electromagnetics.
Widely acclaimed both in the U.S. and abroad, this authoritative text bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading students from familiar concepts into more advanced topics and applications. Maintaining its student-friendly approach, this revision aims to clarify certain concepts and incorporates feedback from instructors and students.
目次
Contents
Timeline and Technology Briefs iv
Preface to the 2006 Edition xiii
1 Introduction: Waves and Phasors 2
1-1 Dimensions, Units, and Notation 5
1-2 The Nature of Electromagnetism 12
1-2.1 The Gravitational Force: A Useful Analogue 13
1-2.2 Electric Fields 14
1-2.3 Magnetic Fields 16
1-2.4 Static and Dynamic Fields 18
1-3 Traveling Waves 18
1-3.1 Sinusoidal Wave in a Lossless Medium 21
1-3.2 Sinusoidal Wave in a Lossy Medium 23
1-4 The Electromagnetic Spectrum 26
1-5 Review of Complex Numbers 28
1-6 Review of Phasors 31
2 Transmission Lines 40
2-1 General Considerations 41
2-1.1 The Role of Wavelength 42
2-1.2 Propagation Modes 43
2-2 Lumped-Element Model 45
2-3 Transmission-Line Equations 49
2-4 Wave Propagation on a Transmission Line 50
2-5 The Lossless Transmission Line 53
2-5.1 Voltage Reflection Coefficient 54
2-5.2 Standing Waves 57
2-6 Input Impedance of the Lossless Line 61
2-7 Special Cases of the Lossless Line 64
2-7.1 Short-Circuited Line 64
2-7.2 Open-Circuited Line 66
2-7.3 Application of Short-Circuit and Open-Circuit Measurements 66
2-7.4 Lines of Length l = n /2 68
2-7.5 Quarter-Wave Transformer 68
2-7.6 Matched Transmission Line: ZL = Z0 68
2-8 Power Flow on a Lossless Transmission Line 70
2-8.1 Instantaneous Power 70
2-8.2 Time-Average Power 71
2-9 The Smith Chart 72
2-9.1 Parametric Equations 72
2-9.2 Input Impedance 77
2-9.3 SWR, Voltage Maxima and Minima 79
2-9.4 Impedance to Admittance Transformations 80
2-10 Impedance Matching 88
2-11 Transients on Transmission Lines 92
2-11.1 Transient Response 92
2-11.2 Bounce Diagrams 96
3 Vector Analysis 108
3-1 Basic Laws of Vector Algebra 109
3-1.1 Equality of Two Vectors 110
3-1.2 Vector Addition and Subtraction 111
3-1.3 Position and Distance Vectors 111
3-1.4 Vector Multiplication 112
3-1.5 Scalar and Vector Triple Products 115
3-2 Orthogonal Coordinate Systems 116
3-2.1 Cartesian Coordinates 117
3-2.2 Cylindrical Coordinates 117
3-2.3 Spherical Coordinates 121
3-3 Transformations between Coordinate Systems 123
3-3.1 Cartesian to Cylindrical Transformations 123
3-3.2 Cartesian to Spherical Transformations 125
3-3.3 Cylindrical to Spherical Transformations 127
3-3.4 Distance between Two Points 127
3-4 Gradient of a Scalar Field 130
3-4.1 Gradient Operator in Cylindrical and Spherical Coordinates 131
3-4.2 Properties of the Gradient Operator 132
3-5 Divergence of a Vector Field 133
3-5.1 Divergence Theorem 135
3-5.2 Remarks on Notation 135
3-6 Curl of a Vector Field 139
3-6.1 Vector Identities Involving the Curl 140
3-6.2 Stokes's Theorem 141
3-7 Laplacian Operator 142
Problems 144
4 Electrostatics 150
4-1 Maxwell's Equations 151
4-2 Charge and Current Distributions 152
4-2.1 Charge Densities 152
4-2.2 Current Density 154
4-3 Coulomb's Law 155
4-3.1 Electric Field due to Multiple Point Charges 156
4-3.2 Electric Field due to a Charge Distribution 157
4-4 Gauss's Law 160
4-5 Electric Scalar Potential 163
4-5.1 Electric Potential as a Function of Electric Field 163
4-5.2 Electric Potential due to Point Charges 165
4-5.3 Electric Potential due to Continuous Distributions 165
4-5.4 Electric Field as a Function of Electric Potential 165
4-5.5 Poisson's Equation 167
4-6 Electrical Properties of Materials 168
4-7 Conductors 169
4-7.1 Resistance 170
4-7.2 Joule's Law 172
4-8 Dielectrics 173
4-9 Electric Boundary Conditions 177
4-9.1 Dielectric-Conductor Boundary 180
4-9.2 Conductor-Conductor Boundary 181
4-10 Capacitance 182
4-11 Electrostatic Potential Energy 190
4-12 Image Method 191
Problems 194
5 Magnetostatics 204
5-1 Magnetic Forces and Torques 205
5-1.1 Magnetic Force on a Current-Carrying Conductor 207
5-1.2 Magnetic Torque on a Current-Carrying Loop 210
5-2 The Biot-Savart Law 213
5-2.1 Magnetic Field due to Surface and Volume Current Distributions 214
5-2.2 Magnetic Field of a Magnetic Dipole 217
5-3 Magnetic Force between Two Parallel Conductors 218
5-4 Maxwell's Magnetostatic Equations 219
5-4.1 Gauss's Law for Magnetism 219
5-4.2 Amp`ere's Law 220
5-5 Vector Magnetic Potential 226
5-6 Magnetic Properties of Materials 228
5-6.1 Orbital and Spin Magnetic Moments 228
5-6.2 Magnetic Permeability 229
5-6.3 Magnetic Hysteresis of Ferromagnetic Materials 230
5-7 Magnetic Boundary Conditions 233
5-8 Inductance 234
5-8.1 Magnetic Field in a Solenoid 235
5-8.2 Self-inductance 238
5-8.3 Mutual Inductance 240
5-9 Magnetic Energy 241
Problems 245
6 Maxwell's Equations for Time-Varying Fields 254
6-1 Faraday's Law 255
6-2 Stationary Loop in a Time-Varying Magnetic Field 257
6-3 The Ideal Transformer 261
6-4 Moving Conductor in a Static Magnetic Field 262
6-5 The Electromagnetic Generator 265
6-6 Moving Conductor in a Time-Varying Magnetic Field 267
6-7 Displacement Current 268
6-8 Boundary Conditions for Electromagnetics 270
6-9 Charge-Current Continuity Relation 271
6-10 Free-Charge Dissipation in a Conductor 273
6-11 Electromagnetic Potentials 276
6-11.1 Retarded Potentials 276
6-11.2 Time-Harmonic Potentials 277
Problems 281
7 Plane-Wave Propagation 286
7-1 Time-Harmonic Fields 288
7-1.1 Complex Permittivity 289
7-1.2 Wave Equations for a Charge-Free Medium 289
7-2 Plane-Wave Propagation in Lossless Media 290
7-2.1 Uniform Plane Waves 290
7-2.2 General Relation between E and H 294
7-3 Wave Polarization 295
7-3.1 Linear Polarization 296
7-3.2 Circular Polarization 297
7-3.3 Elliptical Polarization 299
7-4 Plane-Wave Propagation in Lossy Media 304
7-4.1 Low-Loss Dielectric 306
7-4.2 Good Conductor 306
7-5 Current Flow in a Good Conductor 308
7-6 Electromagnetic Power Density 311
7-6.1 Plane Wave in a Lossless Medium 312
7-6.2 Plane Wave in a Lossy Medium 313
7-6.3 Decibel Scale for Power Ratios 314
Problems 316
8 Reflection, Transmission, and Waveguides 320
8-1 Wave Reflection and Transmission at Normal Incidence 322
8-1.1 Boundary between Lossless Media 322
8-1.2 Transmission-Line Analogue 325
8-1.3 Power Flow in Lossless Media 326
8-1.4 Boundary between Lossy Media 329
8-2 Snell's Laws 331
8-3 Fiber Optics 334
8-4 Wave Reflection and Transmission at Oblique Incidence 336
8-4.1 Perpendicular Polarization 337
8-4.2 Parallel Polarization 341
8-4.3 Brewster Angle 343
8-5 Reflectivity and Transmissivity 346
8-6 Waveguides 349
8-7 General Relations for E and H 351
8-8 TM Modes in Rectangular Waveguide 352
8-9 TE Modes in Rectangular Waveguide 357
8-10 Propagation Velocities 358
8-11 Cavity Resonators 363
8-11.1 Resonant Frequency 364
8-11.2 Quality Factor 364
Problems 366
9 Radiation and Antennas 372
9-1 The Short Dipole 375
9-1.1 Far-Field Approximation 377
9-1.2 Power Density 378
9-2 Antenna Radiation Characteristics 380
9-2.1 Antenna Pattern 381
9-2.2 Beam Dimensions 383
9-2.3 Antenna Directivity 383
9-2.4 Antenna Gain 386
9-2.5 Radiation Resistance 386
9-3 Half-Wave Dipole Antenna 387
9-3.1 Directivity of /2 Dipole 389
9-3.2 Radiation Resistance of /2 Dipole 389
9-3.3 Quarter-Wave Monopole Antenna 390
9-4 Dipole of Arbitrary Length 391
9-5 Effective Area of a Receiving Antenna 392
9-6 Friis Transmission Formula 395
9-7 Radiation by Large-Aperture Antennas 397
9-8 Rectangular Aperture with Uniform Aperture Distribution 400
9-8.1 Beamwidth 401
9-8.2 Directivity and Effective Area 402
9-9 Antenna Arrays 403
9-10 N-Element Array with Uniform Phase Distribution 410
9-11 Electronic Scanning of Arrays 412
9-11.1 Uniform-Amplitude Excitation 414
9-11.2 Array Feeding 415
Problems 418
10 Satellite Communication Systems and Radar Sensors 424
10-1 Satellite Communication Systems 425
10-2 Satellite Transponders 427
10-3 Communication-Link Power Budget 430
10-4 Antenna Beams 432
10-5 Radar Sensors 433
10-5.1 Basic Operation of a Radar System 433
10-5.2 Unambiguous Range 434
10-5.3 Range and Angular Resolutions 435
10-6 Target Detection 436
10-7 Doppler Radar 439
10-8 Monopulse Radar 440
Problems 444
A Symbols, Quantities, and Units 445
B Material Constants of Some Common Materials 447
C Mathematical Formulas 449
D Answers to Odd-Numbered Problems 451
Bibliography 457
Index 459
「Nielsen BookData」 より