Machine learning in document analysis and recognition
Author(s)
Bibliographic Information
Machine learning in document analysis and recognition
(Studies in computational intelligence, v. 90)
Springer, c2008
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.
Table of Contents
to Document Analysis and Recognition.- Structure Extraction in Printed Documents Using Neural Approaches.- Machine Learning for Reading Order Detection in Document Image Understanding.- Decision-Based Specification and Comparison of Table Recognition Algorithms.- Machine Learning for Digital Document Processing: from Layout Analysis to Metadata Extraction.- Classification and Learning Methods for Character Recognition: Advances and Remaining Problems.- Combining Classifiers with Informational Confidence.- Self-Organizing Maps for Clustering in Document Image Analysis.- Adaptive and Interactive Approaches to Document Analysis.- Cursive Character Segmentation Using Neural Network Techniques.- Multiple Hypotheses Document Analysis.- Learning Matching Score Dependencies for Classifier Combination.- Perturbation Models for Generating Synthetic Training Data in Handwriting Recognition.- Review of Classifier Combination Methods.- Machine Learning for Signature Verification.- Off-line Writer Identification and Verification Using Gaussian Mixture Models.
by "Nielsen BookData"