Forecasting with exponential smoothing : the state space approach
著者
書誌事項
Forecasting with exponential smoothing : the state space approach
(Springer series in statistics)
Springer, c2008
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other authors: Anne B. Koehler, J. Keith Ord, Ralph D. Snyder
Includes bibliographical references (p. [339]-348) and index
内容説明・目次
内容説明
Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.
目次
I. Introduction: Basic concepts.- Getting started. II. Essentials: Linear innovations state space models.- Non-linear and heteroscedastic innovations state space models.- Estimation of innovations state space models.- Prediction distributions and intervals.- Selection of models. III. Further topics: Normalizing seasonal components.- Models with regressor variables.- Some properties of linear models.- Reduced forms and relationships with ARIMA models.- Linear innovations state space models with random seed states.- Conventional state space models.- Time series with multiple seasonal patterns.- Non-linear models for positive data.- Models for count data.- Vector exponential smoothing. IV. Applications: Inventory control application.- Conditional heteroscedasticity and finance applications.- Economic applications: the Beveridge-Nelson decomposition.
「Nielsen BookData」 より