Forecasting with exponential smoothing : the state space approach

著者
書誌事項

Forecasting with exponential smoothing : the state space approach

Rob J. Hyndman ... [et al.]

(Springer series in statistics)

Springer, c2008

この図書・雑誌をさがす
注記

Other authors: Anne B. Koehler, J. Keith Ord, Ralph D. Snyder

Includes bibliographical references (p. [339]-348) and index

内容説明・目次

内容説明

Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.

目次

I. Introduction: Basic concepts.- Getting started. II. Essentials: Linear innovations state space models.- Non-linear and heteroscedastic innovations state space models.- Estimation of innovations state space models.- Prediction distributions and intervals.- Selection of models. III. Further topics: Normalizing seasonal components.- Models with regressor variables.- Some properties of linear models.- Reduced forms and relationships with ARIMA models.- Linear innovations state space models with random seed states.- Conventional state space models.- Time series with multiple seasonal patterns.- Non-linear models for positive data.- Models for count data.- Vector exponential smoothing. IV. Applications: Inventory control application.- Conditional heteroscedasticity and finance applications.- Economic applications: the Beveridge-Nelson decomposition.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA86429460
  • ISBN
    • 9783540719168
  • LCCN
    2008924784
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xiii, 359 p.
  • 大きさ
    24 cm
  • 分類
  • 親書誌ID
ページトップへ