Case-based reasoning on images and signals
Author(s)
Bibliographic Information
Case-based reasoning on images and signals
(Studies in computational intelligence, v. 73)
Springer, c2008
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Description
This is the first edited book that deals with the special topic of signals and images within Case-Based Reasoning (CBR). Signal-interpreting systems are becoming increasingly popular in medical, industrial, ecological, biotechnological and many other applications. Existing statistical and knowledge-based techniques lack robustness, accuracy and flexibility. New strategies are needed that can adapt to changing environmental conditions, signal variation, user needs and process requirements. Introducing CBR strategies into signal-interpreting systems can satisfy these requirements.
Table of Contents
to Case-Based Reasoning for Signals and Images.- Similarity.- Distance Function Learning for Supervised Similarity Assessment.- Induction of Similarity Measures for Case Based Reasoning Through Separable Data Transformations.- Graph Matching.- Memory Structures and Organization in Case-Based Reasoning.- Learning a Statistical Model for Performance Prediction in Case-Based Reasoning.- A CBR Agent for Monitoring the Carbon Dioxide Exchange Rate from Satellite Images.- Extracting Knowledge from Sensor Signals for Case-Based Reasoning with Longitudinal Time Series Data.- Prototypes and Case-Based Reasoning for Medical Applications.- Case-Based Reasoning for Image Segmentation by Watershed Transformation.- Similarity-Based Retrieval for Biomedical Applications.- Medical Imagery in Case-Based Reasoning.- Instance-Based Relevance Feedback in Image Retrieval Using Dissimilarity Spaces.
by "Nielsen BookData"