Understanding lasers : an entry-level guide

書誌事項

Understanding lasers : an entry-level guide

Jeff Hecht

(IEEE Press understanding science & technology series)

IEEE Press , John Wiley & Sons, c2008

3rd ed.

  • : pbk.

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

"IEEE order number PP0354-1"--T.p. verso

Includes index

内容説明・目次

内容説明

Updated to reflect advancements since the publication of the previous edition, Understanding Lasers: An Entry-Level Guide, 3rd Edition is an introduction to lasers and associated equipment. You need only a minimal background in algebra to understand the nontechnical language in this book, which is a practical, easy-to-follow guide for beginners. By studying the conceptual drawings, tables, and multiple-choice quizzes with answers provided at the back of the book you can understand applications of semiconductor lasers, solid-state lasers, and gas lasers for information processing, medicine, communications, industry, and military systems.

目次

Preface. CHAPTER 1 Introduction and Overview. 1.1 The Idea of the Laser. 1.2 What is a Laser? 1.3 Laser Materials and Types. 1.4 Optical Properties of Laser Light. 1.5 How Lasers are Used. 1.6 What Have We Learned? CHAPTER 2 Physical Basics. 2.1 Electromagnetic Waves and Photons. 2.2 Quantum and Classical Physics. 2.3 Interactions of Light and Matter. 2.4 Basic Optics and Simple Lenses. 2.5 What Have We Learned? CHAPTER 3 How Lasers Work. 3.1 Building a Laser. 3.2 Producing a Population Inversion. 3.3 Resonant Cavities. 3.4 Laser Beams and Resonance. 3.5 Wavelength Selection and Tuning. 3.6 Laser Excitation Techniques. 3.7 What Have We Learned? CHAPTER 4 Laser Characteristics. 4.1 Coherence. 4.2 Laser Wavelengths. 4.3 Behavior of Laser Beams. 4.4 Laser Power. 4.5 Laser Efficiency. 4.6 Duration of Emission. 4.7 Polarization. 4.8 What Have We Learned? CHAPTER 5 Optics and Laser Accessories. 5.1 Classical Optical Devices. 5.2 Transparent Optical Materials. 5.3 Optical Surfaces, Coatings and Filters. 5.4 Nonlinear Optics. 5.5 Beam Intensity and Pulse Control. 5.6 Beam Direction and Propagation. 5.7 Mounting and Positioning Equipment. 5.8 Optical Measurement. 5.9 What Have We Learned? CHAPTER 6 Types of Lasers. 6.1 Laser Oscillators and Optical Amplifiers. 6.2 Laser Media. 6.3 The Importance of Gain. 6.4 Broadband and Wavelength-Tunable Lasers. 6.5 Laser-Like Light Sources. 6.6 What Have We Learned? CHAPTER 7 Gas Lasers. 7.1 The Gas Laser Family. 7.2 Gas-Laser Basics. 7.3 Helium-Neon Lasers. 7.4 Argon- and Krypton-Ion Lasers. 7.5 Metal-Vapor Lasers. 7.6 Carbon Dioxide Laser. 7.7 Excimer Lasers. 7.8 Chemical Lasers. 7.9 Other Gas Lasers. 7.10 What Have We Learned? CHAPTER 8 Solid-State and Fiber Lasers. 8.1 What is a Solid-State Laser? 8.2 Solid-State Laser Materials. 8.3 Optical Pumping. 8.4 Ruby Lasers. 8.5 Neodymium Lasers. 8.6 Vibronic and Tunable Solid-State Lasers. 8.7 Erbium and Other Eye-Safe Laser. 8.8 Rare-Earth-Doped Fiber Lasers. 8.9 Rare-Earth-Doped Fiber Amplifiers. 8.10 Raman Fiber Lasers and Amplifiers. 8.11 What Have We Learned? CHAPTER 9 Semiconductor Diode Lasers. 9.1 Basics of Semiconductor Diode Lasers. 9.2 Semiconductor Basics. 9.3 Light Emission at Junctions. 9.4 Layers and Confinement in Diode Lasers. 9.5 Confinement in the Junction Plane. 9.6 Edge-Emitting Diode Lasers. 9.7 Surface-Emitting Diode Lasers. 9.8 Quantum Wells and Dots. 9.9 Quantum Cascade Lasers. 9.10 Optical Properties of Diode Lasers. 9.11 Diode Laser Materials and Wavelengths. 9.12 Silicon Lasers. 9.13 Packaging and Specialization of Diode Lasers. 9.14 What Have We Learned? CHAPTER 10 Other Lasers and Related Sources. 10.1 Tunable Dye Lasers. 10.2 Extreme-Ultraviolet Sources. 10.3 Free-Electron Lasers. 10.4 Silicon Lasers. 10.5 What Have We Learned? CHAPTER 11 Low-Power Laser Applications. 11.1 Advantages of Laser Light. 11.2 Reading with Lasers. 11.3 Optical Disks and Data Storage. 11.4 Laser Printing and Marking. 11.5 Fiber-Optic Communications. 11.6 Laser Measurement. 11.7 Laser Pointers, Art, and Entertainment. 11.8 Low-Power Defense Applications. 11.9 Sensing and Spectroscopy. 11.10 Holography. 11.11 Other Low-Power Applications. 11.12 What Have We Learned? CHAPTER 12 High-Power Laser Applications. 12.1 High- Versus Low-Power Laser Applications. 12.2 Attractions of High-Power Lasers. 12.3 Materials Working. 12.4 Electronics Manufacturing. 12.5 Three-Dimensional Modeling. 12.6 Laser Medical Treatment. 12.7 Photochemistry and Isotope Separation. 12.8 Laser-Driven Nuclear Fusion. 12.9 High-Energy Laser Weapons. 12.10 Futuristic High-Power Laser Ideas. 12.11 What Have We Learned? CHAPTER 13 Lasers In Research. 13.1 Lasers Open New Opportunities. 13.2 Laser Spectroscopy. 13.3 Manipulating Tiny Objects. 13.4 Atom Lasers and Bose-Einstein Condensates. 13.5 Slow Light. 13.6 Nanoscale Lasers. 13.7 Petawatt Lasers. 13.8 Attosecond Pulses. 13.9 Laser Acceleration. 13.10 Other Emerging Research. 13.11 What We Have Learned. Answers to Quiz Questions. Appendix A: Laser Safety. Appendix B: Handy Numbers and Formulas. Appendix C: Resources and Suggested Readings. Glossary. Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA86778109
  • ISBN
    • 9780470088906
  • LCCN
    2008275255
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Piscataway, NJ,Hoboken, N.J.
  • ページ数/冊数
    xiii, 478 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ