Data mining : foundations and practice

著者
    • Lin, Tsau Young
書誌事項

Data mining : foundations and practice

Tsau Young Lin ... [et al.](eds.)

(Studies in computational intelligence, 118)

Springer, c2008

この図書・雑誌をさがす
注記

Includes bibliographical reference and index

内容説明・目次

内容説明

The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.

目次

Compact Representations of Sequential Classification Rules.- An Algorithm for Mining Weighted Dense Maximal 1-Complete Regions.- Mining Linguistic Trends from Time Series.- Latent Semantic Space for Web Clustering.- A Logical Framework for Template Creation and Information Extraction.- A Bipolar Interpretation of Fuzzy Decision Trees.- A Probability Theory Perspective on the Zadeh Fuzzy System.- Three Approaches to Missing Attribute Values: A Rough Set Perspective.- MLEM2 Rule Induction Algorithms: With and Without Merging Intervals.- Towards a Methodology for Data Mining Project Development: The Importance of Abstraction.- Fining Active Membership Functions in Fuzzy Data Mining.- A Compressed Vertical Binary Algorithm for Mining Frequent Patterns.- Naive Rules Do Not Consider Underlying Causality.- Inexact Multiple-Grained Causal Complexes.- Does Relevance Matter to Data Mining Research?.- E-Action Rules.- Mining E-Action Rules, System DEAR.- Definability of Association Rules and Tables of Critical Frequencies.- Classes of Association Rules: An Overview.- Knowledge Extraction from Microarray Datasets Using Combined Multiple Models to Predict Leukemia Types.- On the Complexity of the Privacy Problem in Databases.- Ensembles of Least Squares Classifiers with Randomized Kernels.- On Pseudo-Statistical Independence in a Contingency Table.- Role of Sample Size and Determinants in Granularity of Contingency Matrix.- Generating Concept Hierarchies from User Queries.- Mining Efficiently Significant Classification Association Rules.- Data Preprocessing and Data Mining as Generalization.- Capturing Concepts and Detecting Concept-Drift from Potential Unbounded, Ever-Evolving and High-Dimensional Data Streams.- A Conceptual Framework of Data Mining.- How to Prevent Private Data from being Disclosed to a Malicious Attacker.- Privacy-Preserving Naive Bayesian Classification over Horizontally Partitioned Data.- Using Association Rules for Classification from Databases Having Class Label Ambiguities: A Belief Theoretic Method.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA87199901
  • ISBN
    • 9783540784876
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xv, 562 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ