Topics in the constructive theory of countable Markov chains
Author(s)
Bibliographic Information
Topics in the constructive theory of countable Markov chains
Cambridge University Press, 2008
- : pbk
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
this digitally printed version(with corrections)2008 -- T.p.verso
Originally published: 1995
Includes bibliographical references and index
Description and Table of Contents
Description
Markov chains are an important idea, related to random walks, which crops up widely in applied stochastic analysis. They are used, for example, in performance modelling and evaluation of computer networks, queuing networks, and telecommunication systems. The main point of the present book is to provide methods, based on the construction of Lyapunov functions, of determining when a Markov chain is ergodic, null recurrent, or transient. These methods can also be extended to the study of questions of stability. Of particular concern are reflected random walks and reflected Brownian motion. The authors provide not only a self-contained introduction to the theory but also details of how the required Lyapunov functions are constructed in various situations.
Table of Contents
- Introduction and history
- 1. Preliminaries
- 2. General criteria
- 3. Explicit construction of Lyapunov functions
- 4. Ideology of induced chains
- 5. Random walks in two dimensional complexes
- 6. Stability
- 7. Exponential convergence and analyticity for ergodic Markov chains
- Bibliography.
by "Nielsen BookData"