Light-driven alignment
Author(s)
Bibliographic Information
Light-driven alignment
(Springer series in optical sciences, 141)
Springer-Verlag, c2009
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
National Institutes of Natural Sciences Okazaki Library and Information Center図
425.08/Sp/1419109425421
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book discusses how, in random media, light dramatically changes electron- electron interaction. Despite Coulomb repulsion, the effective interaction dem- strates attraction, even under strong pumping. Light (both coherent and natural) acts like an optical motor, transporting electrons in a direction opposite to that of the electric force direction: electric current ?ows against bias and static polarization is aligned in opposition to the applied electric ?eld. The uncommon electron transport increases the initial perturbations and is the foundation of the light-driven struct- ing of a matter. This structuring belongs to the class of self-organization phenomena of open dissipative systems and exhibits a number of fascinating properties. Light pushes electrons into spatially ordered macroscopic bunches observed in fused silica under ArF-laser irradiation. It carves material balls with ?xed diameters equal to 2 microns and throws them out of the ablation crater. Moderate light int- sity drills material, forming long channels that align with the wave vector and drill diameters can be as small as 2 microns, while the beam spot is a few millimeters. Bicolor excitation causes orientational ordering in random media. We monitored the induced transformation by measuring the emerged second harmonic signal. The orientational ordering has been used for all optical poling of glasses. Light tre- ment prepares phase-matched grating of second-order nonlinear susceptibility and provides effective second harmonic generation. All optical poling was performed in bulk materials and ?bers.
Table of Contents
Light-Driven Ordering: Theory.- Domain Charge Structure of Amorphous Semiconductor.- Light-Driven Spatial Ordering in Random Media.- Light-Driven Orientational Ordering in Random Media.- Self-Organization in Ge-Doped Silica Fibers and Second Harmonic Generation.- Optical Motor: Toward the Model of Life Emerging on Earth.- Electron Acceleration by Petawatt Light Pulses.- Light-Driven Temporal Self-Organization.- Light-Driven Bistability of Molecular Crystals.- Charge Transfer Excitons in Soft Matter.
by "Nielsen BookData"