Introduction to applied multivariate analysis
著者
書誌事項
Introduction to applied multivariate analysis
Routledge, c2008
- : hbk
大学図書館所蔵 件 / 全5件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. 469-472
Includes indexes
内容説明・目次
内容説明
This comprehensive text introduces readers to the most commonly used multivariate techniques at an introductory, non-technical level. By focusing on the fundamentals, readers are better prepared for more advanced applied pursuits, particularly on topics that are most critical to the behavioral, social, and educational sciences. Analogies between the already familiar univariate statistics and multivariate statistics are emphasized throughout. The authors examine in detail how each multivariate technique can be implemented using SPSS and SAS and Mplus in the book's later chapters. Important assumptions are discussed along the way along with tips for how to deal with pitfalls the reader may encounter. Mathematical formulas are used only in their definitional meaning rather than as elements of formal proofs.
A book specific website - www.psypress.com/applied-multivariate-analysis - provides files with all of the data used in the text so readers can replicate the results. The Appendix explains the data files and its variables. The software code (for SAS and Mplus) and the menu option selections for SPSS are also discussed in the book. The book is distinguished by its use of latent variable modeling to address multivariate questions specific to behavioral and social scientists including missing data analysis and longitudinal data modeling.
Ideal for graduate and advanced undergraduate students in the behavioral, social, and educational sciences, this book will also appeal to researchers in these disciplines who have limited familiarity with multivariate statistics. Recommended prerequisites include an introductory statistics course with exposure to regression analysis and some familiarity with SPSS and SAS.
目次
Preface. 1. Introduction to Multivariate Statistics. 2. Elements of Matrix Theory. 3. Data Screening and Preliminary Analyses. 4. Multivariate Analysis of Group Differences. 5. Repeated Measure Analysis of Variance. 6. Analysis of Covariance. 7. Principal Component Analysis. 8. Exploratory Factor Analysis. 9. Confirmatory Factor Analysis. 10. Discriminant Function Analysis. 11. Canonical Correlation Analysis. 12. An Introduction to the Analysis of Missing Data. 13. Multivariate Analyses of Change Processes. References. Appendix.
「Nielsen BookData」 より