Numerical approximation of partial differential equations

書誌事項

Numerical approximation of partial differential equations

Alfio Quarteroni, Alberto Valli

(Springer series in computational mathematics, 23)

Springer-Verlag, c2008

  • : softcover

この図書・雑誌をさがす
注記

Includes bibliographical references (p. [509]-535) and index

内容説明・目次

内容説明

Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

目次

Basic Concepts and Methods for PDEs' Approximation.- Numerical Solution of Linear Systems.- Finite Element Approximation.- Polynomial Approximation.- Galerkin, Collocation and Other Methods.- Approximation of Boundary Value Problems.- Elliptic Problems: Approximation by Galerkin and Collocation Methods.- Elliptic Problems: Approximation by Mixed and Hybrid Methods.- Steady Advection-Diffusion Problems.- The Stokes Problem.- The Steady Navier-Stokes Problem.- Approximation of Initial-Boundary Value Problems.- Parabolic Problems.- Unsteady Advection-Diffusion Problems.- The Unsteady Navier-Stokes Problem.- Hyperbolic Problems.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
ページトップへ