Mems and microsystems : design, manufacture, and nanoscale engineering

書誌事項

Mems and microsystems : design, manufacture, and nanoscale engineering

Tai-Ran Hsu

John Wiley, c2008

2nd ed.

大学図書館所蔵 件 / 9

この図書・雑誌をさがす

注記

Includes bibliographical references and index

HTTP:URL=http://www.loc.gov/catdir/toc/ecip0716/2007017041.html Information=Table of contents only

HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0741/2007017041-d.html Information=Publisher description

HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0806/2007017041-b.html Information=Contributor biographical information

内容説明・目次

内容説明

Technology/Engineering/Mechanical A bestselling MEMS text...now better than ever. An engineering design approach to Microelectromechanical Systems, MEMS and Microsystems remains the only available text to cover both the electrical and the mechanical aspects of the technology. In the five years since the publication of the first edition, there have been significant changes in the science and technology of miniaturization, including microsystems technology and nanotechnology. In response to the increasing needs of engineers to acquire basic knowledge and experience in these areas, this popular text has been carefully updated, including an entirely new section on the introduction of nanoscale engineering. Following a brief introduction to the history and evolution of nanotechnology, the author covers the fundamentals in the engineering design of nanostructures, including fabrication techniques for producing nanoproducts, engineering design principles in molecular dynamics, and fluid flows and heat transmission in nanoscale substances. Other highlights of the Second Edition include: * Expanded coverage of microfabrication plus assembly and packaging technologies * The introduction of microgyroscopes, miniature microphones, and heat pipes * Design methodologies for thermally actuated multilayered device components * The use of popular SU-8 polymer material Supported by numerous examples, case studies, and applied problems to facilitate understanding and real-world application, the Second Edition will be of significant value for both professionals and senior-level mechanical or electrical engineering students.

目次

Preface xvii Preface To The First Edition xix Suggestions To Instructors xxiii 1 OVERVIEW OF MEMS AND MICROSYSTEMS 1 1.1 MEMS and Microsystems 1 1.2 Typical MEMS and Microsystems Products 7 1.2.1 Microgears 7 1.2.2 Micromotors 7 1.2.3 Microturbines 7 1.2.4 Micro-Optical Components 7 1.3 Evolution of Microfabrication 10 1.4 Microsystems and Microelectronics 11 1.5 Multidisciplinary Nature of Microsystems Design and Manufacture 13 1.6 Microsystems and Miniaturization 15 1.7 Application of Microsystems in Automotive Industry 21 1.7.1 Safety 22 1.7.2 Engine and Power Trains 24 1.7.3 Comfort and Convenience 24 1.7.4 Vehicle Diagnostics and Health Monitoring 24 1.7.5 Future Automotive Applications 26 1.8 Application of Microsystems in Other Industries 27 1.8.1 Application in Health Care Industry 27 1.8.2 Application in Aerospace Industry 28 1.8.3 Application in Industrial Products 29 1.8.4 Application in Consumer Products 29 1.8.5 Application in Telecommunications 30 1.9 Markets for Microsystems 30 Problems 32 2 WORKING PRINCIPLES OF MICROSYSTEMS 35 2.1 Introduction 35 2.2 Microsensors 35 2.2.1 Acoustic Wave Sensors 36 2.2.2 Biomedical and Biosensors 37 2.2.3 Chemical Sensors 40 2.2.4 Optical Sensors 42 2.2.5 Pressure Sensors 44 2.2.6 Thermal Sensors 50 2.3 Microactuation 53 2.3.1 Actuation Using Thermal Forces 53 2.3.2 Actuation Using Shape Memory Alloys 54 2.3.3 Actuation Using Piezoelectric Effect 54 2.3.4 Actuation Using Electrostatic Forces 55 2.4 MEMS with Microactuators 59 2.4.1 Microgrippers 59 2.4.2 Miniature Microphones 61 2.4.3 Micromotors 64 2.5 Microactuators with Mechanical Inertia 66 2.5.1 Microaccelerometers 66 2.5.2 Microgyroscopes 70 2.6 Microfluidics 72 2.6.1 Microvalves 74 2.6.2 Micropumps 75 2.6.3 Micro-Heat Pipes 75 Problems 77 3 ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION 83 3.1 Introduction 83 3.2 Atomic Structure of Matter 83 3.3 Ions and Ionization 86 3.4 Molecular Theory of Matter and Intermolecular Forces 87 3.5 Doping of Semiconductors 89 3.6 Diffusion Process 92 3.7 Plasma Physics 99 3.8 Electrochemistry 100 3.8.1 Electrolysis 101 3.8.2 Electrohydrodynamics 102 Problems 105 4 ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN 109 4.1 Introduction 109 4.2 Static Bending of Thin Plates 110 4.2.1 Bending of Circular Plates with Edge Fixed 112 4.2.2 Bending of Rectangular Plates with All Edges Fixed 114 4.2.3 Bending of Square Plates with Edges Fixed 116 4.3 Mechanical Vibration 119 4.3.1 General Formulation 119 4.3.2 Resonant Vibration 123 4.3.3 Microaccelerometers 125 4.3.4 Design Theory of Accelerometers 126 4.3.5 Damping Coefficients 134 4.3.6 Resonant Microsensors 144 4.4 Thermomechanics 150 4.4.1 Thermal Effects on Mechanical Strength of Materials 150 4.4.2 Creep Deformation 150 4.4.3 Thermal Stresses 152 4.5 Fracture Mechanics 165 4.5.1 Stress Intensity Factors 166 4.5.2 Fracture Toughness 167 4.5.3 Interfacial Fracture Mechanics 169 4.6 Thin-Film Mechanics 172 4.7 Overview of Finite Element Stress Analysis 173 4.7.1 The Principle 173 4.7.2 Engineering Applications 175 4.7.3 Input Information to FEA 175 4.7.4 Output from FEA 175 4.7.5 Graphical Output 176 4.7.6 General Remarks 176 Problems 178 5 THERMOFLUID ENGINEERING AND MICROSYSTEMS DESIGN 183 5.1 Introduction 183 5.2 Overview of Basics of Fluid Mechanics at Macro- and Mesoscales 184 5.2.1 Viscosity of Fluids 184 5.2.2 Streamlines and Stream Tubes 186 5.2.3 Control Volumes and Control Surfaces 187 5.2.4 Flow Patterns and Reynolds Number 187 5.3 Basic Equations in Continuum Fluid Dynamics 187 5.3.1 Continuity Equation 187 5.3.2 Momentum Equation 190 5.3.3 Equation of Motion 192 5.4 Laminar Fluid Flow in Circular Conduits 195 5.5 Computational Fluid Dynamics 198 5.6 Incompressible Fluid Flow in Microconduits 199 5.6.1 Surface Tension 199 5.6.2 Capillary Effect 201 5.6.3 Micropumping 203 5.7 Overview of Heat Conduction in Solids 204 5.7.1 General Principle of Heat Conduction 204 5.7.2 Fourier Law of Heat Conduction 205 5.7.3 Heat Conduction Equation 207 5.7.4 Newton's Cooling Law 208 5.7.5 Solid-Fluid Interaction 209 5.7.6 Boundary Conditions 210 5.8 Heat Conduction in Multilayered Thin Films 215 5.9 Heat Conduction in Solids at Submicrometer Scale 220 Problems 221 6 SCALING LAWS IN MINIATURIZATION 227 6.1 Introduction to Scaling 227 6.2 Scaling in Geometry 228 6.3 Scaling in Rigid-Body Dynamics 230 6.3.1 Scaling in Dynamic Forces 230 6.3.2 Trimmer Force Scaling Vector 231 6.4 Scaling in Electrostatic Forces 233 6.5 Scaling of Electromagnetic Forces 235 6.6 Scaling in Electricity 237 6.7 Scaling in Fluid Mechanics 238 6.8 Scaling in Heat Transfer 242 6.8.1 Scaling in Heat Conduction 242 6.8.2 Scaling in Heat Convection 243 Problems 244 7 MATERIALS FOR MEMS AND MICROSYSTEMS 245 7.1 Introduction 245 7.2 Substrates and Wafers 245 7.3 Active Substrate Materials 247 7.4 Silicon as Substrate Material 247 7.4.1 Ideal Substrate for MEMS 247 7.4.2 Single-Crystal Silicon and Wafers 248 7.4.3 Crystal Structure 250 7.4.4 Miller Indices 253 7.4.5 Mechanical Properties of Silicon 256 7.5 Silicon Compounds 258 7.5.1 Silicon Dioxide 258 7.5.2 Silicon Carbide 259 7.5.3 Silicon Nitride 259 7.5.4 Polycrystalline Silicon 260 7.6 Silicon Piezoresistors 261 7.7 Gallium Arsenide 266 7.8 Quartz 267 7.9 Piezoelectric Crystals 268 7.10 Polymers 274 7.10.1 Polymers as Industrial Materials 274 7.10.2 Polymers for MEMS and Microsystems 275 7.10.3 Conductive Polymers 275 7.10.4 Langmuir-Blodgett Film 277 7.10.5 SU-8 Photoresists 278 7.11 Packaging Materials 280 Problems 281 8 MICROSYSTEMS FABRICATION PROCESSES 285 8.1 Introduction 285 8.2 Photolithography 285 8.2.1 Overview 286 8.2.2 Photoresists and Application 286 8.2.3 Light Sources 288 8.2.4 Photoresist Development 289 8.2.5 Photoresist Removal and Postbaking 289 8.3 Ion Implantation 289 8.4 Diffusion 292 8.5 Oxidation 295 8.5.1 Thermal Oxidation 295 8.5.2 Silicon Dioxide 296 8.5.3 Thermal Oxidation Rates 296 8.5.4 Oxide Thickness by Color 300 8.6 Chemical Vapor Deposition 301 8.6.1 Working Principle of CVD 301 8.6.2 Chemical Reactions in CVD 302 8.6.3 Rate of Deposition 303 8.6.4 Enhanced CVD 310 8.7 Physical Vapor Deposition: Sputtering 312 8.8 Deposition by Epitaxy 313 8.9 Etching 315 8.9.1 Chemical Etching 316 8.9.2 Plasma Etching 317 8.10 Summary of Microfabrication 317 Problems 318 9 OVERVIEW OF MICROMANUFACTURING 323 9.1 Introduction 323 9.2 Bulk Micromanufacturing 324 9.2.1 Overview of Etching 324 9.2.2 Isotropic and Anisotropic Etching 325 9.2.3 Wet Etchants 326 9.2.4 Etch Stop 328 9.2.5 Dry Etching 329 9.2.6 Comparison of Wet versus Dry Etching 333 9.3 Surface Micromachining 333 9.3.1 Description 333 9.3.2 Process 335 9.3.3 Mechanical Problems Associated with Surface Micromachining 336 9.4 LIGA Process 338 9.4.1 Description 339 9.4.2 Materials for Substrates and Photoresists 340 9.4.3 Electroplating 341 9.4.4 SLIGA Process 342 9.5 Summary of Micromanufacturing 343 9.5.1 Bulk Micromanufacturing 343 9.5.2 Surface Micromachining 343 9.5.3 LIGA Process 343 Problems 344 10 MICROSYSTEMS DESIGN 349 10.1 Introduction 349 10.2 Design Considerations 350 10.2.1 Design Constraints 351 10.2.2 Selection of Materials 352 10.2.3 Selection of Manufacturing Processes 354 10.2.4 Selection of Signal Transduction 355 10.2.5 Electromechanical System 358 10.2.6 Packaging 358 10.3 Process Design 358 10.3.1 Photolithography 359 10.3.2 Thin-Film Fabrications 360 10.3.3 Geometry Shaping 362 10.4 Mechanical Design 362 10.4.1 Geometry of MEMS Components 362 10.4.2 Thermomechanical Loading 362 10.4.3 Thermomechanical Stress Analysis 363 10.4.4 Dynamic Analysis 364 10.4.5 Interfacial Fracture Analysis 369 10.5 Mechanical Design Using Finite Element Method 369 10.5.1 Finite Element Formulation 370 10.5.2 Simulation of Microfabrication Processes 375 10.6 Design of Silicon Die of a Micropressure Sensor 378 10.7 Design of Microfluidic Network Systems 382 10.7.1 Fluid Resistance in Microchannels 383 10.7.2 Capillary Electrophoresis Network Systems 386 10.7.3 Mathematical Modeling of Capillary Electrophoresis Network Systems 388 10.7.4 Design Case: Capillary Electrophoresis Network System 389 10.7.5 Capillary Electrophoresis in Curved Channels 392 10.7.6 Issues in Design of CE Processes 394 10.8 Computer-Aided Design 395 10.8.1 Why CAD? 395 10.8.2 What Is in a CAD Package for Microsystems? 395 10.8.3 How to Choose a CAD Package 398 10.8.4 Design Case Using CAD 398 Problems 402 11 ASSEMBLY, PACKAGING, AND TESTING OF MICROSYSTEMS 407 11.1 Introduction 407 11.2 Overview of Microassembly 409 11.3 High Costs of Microassembly 410 11.4 Microassembly Processes 411 11.5 Major Technical Problems in Microassembly 413 11.5.1 Tolerances in Microassembly 414 11.5.2 Tools and Fixtures 417 11.5.3 Contact Problems in Microassembly Tools 417 11.6 Microassembly Work Cells 419 11.7 Challenging Issues in Microassembly 421 11.8 Overview of Microsystems Packaging 422 11.9 General Considerations in Packaging Design 424 11.10 Three Levels of Microsystems Packaging 424 11.10.1 Die-Level Packaging 424 11.10.2 Device-Level Packaging 425 11.10.3 System-Level Packaging 427 11.11 Interfaces in Microsystems Packaging 427 11.12 Essential Packaging Technologies 428 11.13 Die Preparation 429 11.14 Surface Bonding 429 11.14.1 Adhesives 430 11.14.2 Eutectic Bonding 431 11.14.3 Anodic Bonding 432 11.14.4 Silicon Fusion Bonding 434 11.14.5 Overview of Surface Bonding Techniques 434 11.14.6 Silicon-on-Insulator: Special Surface Bonding Techniques 435 11.15 Wire Bonding 437 11.16 Sealing and Encapsulation 439 11.16.1 Integrated Encapsulation Processes 440 11.16.2 Sealing by Wafer Bonding 441 11.16.3 Vacuum Sealing and Encapsulation 442 11.17 Three-Dimensional Packaging 443 11.18 Selection of Packaging Materials 444 11.19 Signal Mapping and Transduction 447 11.19.1 Typical Electrical Signals in Microsystems 447 11.19.2 Measurement of Resistance 447 11.19.3 Signal Mapping and Transduction in Pressure Sensors 448 11.19.4 Capacitance Measurements 450 11.20 Design Case on Pressure Sensor Packaging 451 11.21 Reliability in MEMS Packaging 455 11.22 Testing for Reliability 456 Problems 458 12 INTRODUCTION TO NANOSCALE ENGINEERING 465 12.1 Introduction 465 12.2 Micro- and Nanoscale Technologies 467 12.3 General Principle of Nanofabrication 468 12.4 Nanoproducts 471 12.5 Application of Nanoproducts 474 12.6 Quantum Physics 478 12.7 Molecular Dynamics 479 12.8 Fluid Flow in Submicrometer- and Nanoscales 482 12.8.1 Rarefied Gas 482 12.8.2 Knudsen and Mach Numbers 482 12.8.3 Modeling of Micro- and Nanoscale Gas Flow 483 12.9 Heat Conduction at Nanoscale 486 12.9.1 Heat Transmission at Submicrometer- and Nanoscale 486 12.9.2 Thermal Conductivity of Thin Films 489 12.9.3 Heat Conduction Equation for Thin Films 490 12.10 Measurement of Thermal Conductivity 491 12.11 Challenges in Nanoscale Engineering 497 12.11.1 Nanopatterning in Nanofabrication 498 12.11.2 Nanoassembly 500 12.11.3 New Materials for Nanoelectromechanical Systems (NEMS) 500 12.11.4 Analytical Modeling 501 12.11.5 Testing 502 12.12 Social Impacts of Nanoscale Engineering 502 Problems 503 References 509 Appendix 1 Recommended Units For Thermophysical Quantities 523 Appendix 2 Conversion Of Units 525 Index 527

「Nielsen BookData」 より

詳細情報

ページトップへ