Interval/probabilistic uncertainty and non-classical logics
著者
書誌事項
Interval/probabilistic uncertainty and non-classical logics
(Advances in soft computing, 46)
Springer, c2008
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Yoshiteru Nakamori, Hiroakira Ono, Jonathan Lawry, Vladik Kreinovich, Hung T. Nguyen
Includes bibliographical references and index
内容説明・目次
内容説明
Large-scale data processing is important. Most successful applications of m- ern science and engineering, from discovering the human genome to predicting weather to controlling space missions, involve processing large amounts of data and large knowledge bases. The corresponding large-scale data and knowledge processing requires intensive use of computers. Computers are based on processing exact data values and truth values from the traditional 2-value logic. The ability of computers to perform fast data and knowledgeprocessingisbasedonthehardwaresupportforsuper-fastelementary computer operations, such as performing arithmetic operations with (exactly known) numbers and performing logical operations with binary (“true”-“false”) logical values. In practice, we need to go beyond exact data values and truth values from the traditional 2-value logic. In practical applications, we need to go beyond such operations. Input is only known with uncertainty. Let us ?rst illustrate this need on the example of operations with numbers. Hardware-supported computer operations (implicitly) assume that we know the exact values of the input quantities. In reality, the input data usually comes from measurements. Measurements are never 100% accurate. Due to such factors as imperfection of measurement - struments and impossibility to reduce noise level to 0, the measured value x of each input quantity is, in general, di?erent from the (unknown) actual value x of this quantity. It is therefore necessary to ?nd out how this input uncertainty def ?x = x ?x = 0 a?ects the results of data processing.
目次
Keynote Addresses.- An Algebraic Approach to Substructural Logics – An Overview.- On Modeling of Uncertainty Measures and Observed Processes.- Statistics under Interval Uncertainty and Imprecise Probability.- Fast Algorithms for Computing Statistics under Interval Uncertainty: An Overview.- Trade-Off between Sample Size and Accuracy: Case of Static Measurements under Interval Uncertainty.- Trade-Off between Sample Size and Accuracy: Case of Dynamic Measurements under Interval Uncertainty.- Estimating Quality of Support Vector Machines Learning under Probabilistic and Interval Uncertainty: Algorithms and Computational Complexity.- Imprecise Probability as an Approach to Improved Dependability in High-Level Information Fusion.- Uncertainty Modelling and Reasoning in Knowledge-Based Systems.- Label Semantics as a Framework for Granular Modelling.- Approximating Reasoning for Fuzzy-Based Information Retrieval.- Probabilistic Constraints for Inverse Problems.- The Evidential Reasoning Approach for Multi-attribute Decision Analysis under Both Fuzzy and Interval Uncertainty.- Modelling and Computing with Imprecise and Uncertain Properties in Object Bases.- Rough Sets and Belief Functions.- Several Reducts in Dominance-Based Rough Set Approach.- Topologies of Approximation Spaces of Rough Set Theory.- Uncertainty Reasoning in Rough Knowledge Discovery.- Semantics of the Relative Belief of Singletons.- A Lattice-Theoretic Interpretation of Independence of Frames.- Non-classical Logics.- Completions of Ordered Algebraic Structures: A Survey.- The Algebra of Truth Values of Type-2 Fuzzy Sets: A Survey.- Some Properties of Logic Functions over Multi-interval Truth Values.- Possible Semantics for a Common Framework of Probabilistic Logics.- A Unified Formulation of Deduction,Induction and Abduction Using Granularity Based on VPRS Models and Measure-Based Semantics for Modal Logics.- Information from Inconsistent Knowledge: A Probability Logic Approach.- Fuzziness and Uncertainty Analysis in Applications.- Personalized Recommendation for Traditional Crafts Using Fuzzy Correspondence Analysis with Kansei Data and OWA Operator.- A Probability-Based Approach to Consumer Oriented Evaluation of Traditional Craft Items Using Kansai Data.- Using Interval Function Approximation to Estimate Uncertainty.- Interval Forecasting of Crude Oil Price.- Automatic Classification for Decision Making of the Severeness of the Acute Radiation Syndrome.
「Nielsen BookData」 より