Interval/probabilistic uncertainty and non-classical logics
Author(s)
Bibliographic Information
Interval/probabilistic uncertainty and non-classical logics
(Advances in soft computing, 46)
Springer, c2008
Available at 3 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Other editors: Yoshiteru Nakamori, Hiroakira Ono, Jonathan Lawry, Vladik Kreinovich, Hung T. Nguyen
Includes bibliographical references and index
Description and Table of Contents
Description
Large-scale data processing is important. Most successful applications of m- ern science and engineering, from discovering the human genome to predicting weather to controlling space missions, involve processing large amounts of data and large knowledge bases. The corresponding large-scale data and knowledge processing requires intensive use of computers. Computers are based on processing exact data values and truth values from the traditional 2-value logic. The ability of computers to perform fast data and knowledgeprocessingisbasedonthehardwaresupportforsuper-fastelementary computer operations, such as performing arithmetic operations with (exactly known) numbers and performing logical operations with binary (“true”-“false”) logical values. In practice, we need to go beyond exact data values and truth values from the traditional 2-value logic. In practical applications, we need to go beyond such operations. Input is only known with uncertainty. Let us ?rst illustrate this need on the example of operations with numbers. Hardware-supported computer operations (implicitly) assume that we know the exact values of the input quantities. In reality, the input data usually comes from measurements. Measurements are never 100% accurate. Due to such factors as imperfection of measurement - struments and impossibility to reduce noise level to 0, the measured value x of each input quantity is, in general, di?erent from the (unknown) actual value x of this quantity. It is therefore necessary to ?nd out how this input uncertainty def ?x = x ?x = 0 a?ects the results of data processing.
Table of Contents
Keynote Addresses.- An Algebraic Approach to Substructural Logics – An Overview.- On Modeling of Uncertainty Measures and Observed Processes.- Statistics under Interval Uncertainty and Imprecise Probability.- Fast Algorithms for Computing Statistics under Interval Uncertainty: An Overview.- Trade-Off between Sample Size and Accuracy: Case of Static Measurements under Interval Uncertainty.- Trade-Off between Sample Size and Accuracy: Case of Dynamic Measurements under Interval Uncertainty.- Estimating Quality of Support Vector Machines Learning under Probabilistic and Interval Uncertainty: Algorithms and Computational Complexity.- Imprecise Probability as an Approach to Improved Dependability in High-Level Information Fusion.- Uncertainty Modelling and Reasoning in Knowledge-Based Systems.- Label Semantics as a Framework for Granular Modelling.- Approximating Reasoning for Fuzzy-Based Information Retrieval.- Probabilistic Constraints for Inverse Problems.- The Evidential Reasoning Approach for Multi-attribute Decision Analysis under Both Fuzzy and Interval Uncertainty.- Modelling and Computing with Imprecise and Uncertain Properties in Object Bases.- Rough Sets and Belief Functions.- Several Reducts in Dominance-Based Rough Set Approach.- Topologies of Approximation Spaces of Rough Set Theory.- Uncertainty Reasoning in Rough Knowledge Discovery.- Semantics of the Relative Belief of Singletons.- A Lattice-Theoretic Interpretation of Independence of Frames.- Non-classical Logics.- Completions of Ordered Algebraic Structures: A Survey.- The Algebra of Truth Values of Type-2 Fuzzy Sets: A Survey.- Some Properties of Logic Functions over Multi-interval Truth Values.- Possible Semantics for a Common Framework of Probabilistic Logics.- A Unified Formulation of Deduction,Induction and Abduction Using Granularity Based on VPRS Models and Measure-Based Semantics for Modal Logics.- Information from Inconsistent Knowledge: A Probability Logic Approach.- Fuzziness and Uncertainty Analysis in Applications.- Personalized Recommendation for Traditional Crafts Using Fuzzy Correspondence Analysis with Kansei Data and OWA Operator.- A Probability-Based Approach to Consumer Oriented Evaluation of Traditional Craft Items Using Kansai Data.- Using Interval Function Approximation to Estimate Uncertainty.- Interval Forecasting of Crude Oil Price.- Automatic Classification for Decision Making of the Severeness of the Acute Radiation Syndrome.
by "Nielsen BookData"